【题目】已知抛物线y=ax2+bx-3a-5经过点A(2,5)
(1)求出a和b之间的数量关系.
(2)已知抛物线的顶点为D点,直线AD与y轴交于(0,-7)
①求出此时抛物线的解析式;
②点B为y轴上任意一点且在直线y=5和直线y=-13之间,连接BD绕点B逆时针旋转90°,得到线段BC,连接AB、AC,将AB绕点B顺时针旋转90°,得到线段BH.截取BC的中点F和DH的中点G.当点D、点H、点C三点共线时,分别求出点F和点G的坐标.
【答案】(1)a+2b=10;(2)①y= 2x2+4x-11,②G1(,),F1(,),G2(,),F2(,)
【解析】
(1)把点A坐标代入抛物线y=ax2+bx-3a-5即可得到a和b之间的数量关系;
(2)①求出直线AD的解析式,与抛物线y=ax2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a,b,即可求出解析式;
②作AI⊥y轴于点I,HJ⊥y轴于点J.设B(0,t),根据旋转性质表示粗H、D、C坐标,应含t式子表示直线AD的解析式,根据D、H、C三点共线,把点C坐标代入求出,,分两类讨论,分别求出G、F坐标。
解:(1)把A(2,5)代入y=ax2+bx-3a-5得4a+2b-3a-5=5
∴a+2b=10
∴a和b之间的数量关系是a+2b=10
(2)①设直线AD的解析式为y=kx+c
∵直线AD与y轴交于(0,-7),A(2,5)
∴解得即直线AD的解析式为y=6x-7
联立抛物线y=ax2+bx-3a-5与直线AD:y=6x-7 得
消去y得ax2+(b-6)x-3a+2=0
∵抛物线与直线AD有两个交点
∴由韦达定理可得:xA+xD==,xAxD=
∵A(2,5)∴xA=2即xD=∵xD==
∴=解得a=2∴b== 4
∴此时抛物线的解析式为y= 2x2+4x-11
②如图所示:作AI⊥y轴于点I,HJ⊥y轴于点J.设B(0,t)
∵A(2,5),∴AI=2,BJ=5-t
∵AB绕点B顺时针旋转90°,得到线段BH
∴AB=BH,∠ABH=90°,∠AIB=∠BJH=90°
∵∠IAB+∠IBA=90°,∠ABH+∠IBA+∠JBH=180°
∴∠IBA+∠JBH=90°即∠IAB=∠JBH
∴△AJB≌△BJH即AI=BJ=2,BI=IH=5-t
∴H(5-t,t-2)
∵D(-1,-13)∴yB-yD=t+13
同理可得:C(t+13,t-1)
设DH的解析式为y=k1x+b1
∴解得
即直线AD的解析式为
∵D、H、C三点共线
∴把C(t+13,t-1)代入得:
整理得2t2+31t+82=0解得,
由图可知:①当如图1所示:
此时H(,) ,C(,)
∵点G为DH中点,点F为BC中点
∴G1(,) ,F1(,)
由图可知:当如图2所示:
此时H(,) ,C(,)
∵点G为DH中点,点F为BC中点
∴G2(,) ,F2(,) (14分)
∴综上所述:G1(,) ,F1(,)
G2(,) ,F2(,)。
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,作AG⊥PQ于点G,则AG的最大值为( )
A.B.C.D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:
(1)扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;
(2)该区今年共种植月季8000株,成活了约 株;
(3)园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小李经营一个社区快递网点,负责周边快件收发,由于疫情原因,到2020年2月12 日网点才可以复工,而该网点的另外两名员工因为办理复工手续,将分别在2月15日和2月26日返岗,工作据大数据显示,预计从复工之日开始,每日到达该网点的快件数量(件)与第天(2月12日为第天)满足:.已知一位快递员日均派送快件量为件,通过加班最高可派送件.
前三天小李派送的快件总量为_ 件;
以最高派送量派送快件还有剩余时,则当天剩余快件留到第二天优先派送,
①到第十天结束时,滞留的快件共有 件; 到第十四天结束时,滞留的快件共有__件;
②2月18日后快递激增爆仓,小李和员工每天加班派送,根据现有快递数量的变化趋势,从2月19日开始计算,小李至少要加班几天才可以不用加班派送.(即小李不加班派送的情况下,快递点没有滞留件)
到了3月5日,全国疫情稳定,预计每日到达网点的快件数量将按新趋势变化,“女神节”期间(3月6日-9日)日均快件量为件,3月10日起日均快件量稳定在件.此时小李接到快递总公司新规定:从3月10日开始,到达的快件必须当天派送完毕,否则将扣除滞留快件滞留费元/件天(之前滞留的快件从3月10日0时开始收取滞留费)为此,小李想到从市场招聘____名临时工帮助派送快递,若临时工基本工资元/天,外加派送费元/件临时工一天最多可派送快件件,为了将支出降到最低,小李应该聘请临时工几天,派送快件共多少件?此时最低支出多少元钱?直接写出你的答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某通讯经营店销售,两种品牌儿童手机,今年进货和销售价格如下表:
型手机 | 型手机 | |
进货价格(元/只) | 1000 | 1100 |
销售价格(元/只) | 1500 |
已知型手机去年4月份销售总额为3.6万元,今年经过改造升级后每部销售价比去年增加400元.今年4月份型手机的销售数量与去年4月份相同,而销售总额为5.4万元.
(1)求今年4月份型手机的销售价是多少元?
(2)该店计划6月份再进一批型和型手机共50部且型手机数量不超过型手机数量的2倍,应如何进货才能使这批儿童手机获利最多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com