精英家教网 > 初中数学 > 题目详情

【题目】1)如图①∠1+2与∠B+C有什么关系?为什么?

2)把图①ABC沿DE折叠,得到图②,填空:

1+2   B+C(填”“”“),当∠A60°时,∠B+C+1+2   

3)如图③,是由图①的ABC沿DE折叠得到的,猜想∠BDA+CEA与∠A的关系,并证明你的猜想.

【答案】1)∠1+2=∠B+C;理由见解析;

2)=;240°

3)∠BDA+CEA2A;理由见解析.

【解析】

1)根据三角形的内角和定理即可推得∠1+2与∠B+C的关系;

2)由折叠的性质和(1)的结论可得∠1+2与B+C的关系;当∠A60°时,先求出∠B+C的度数,再利用前者的结论即可得出答案;

3)如图③,延长BDCE的延长线于A,利用三角形的外角的性质即可得出结论:∠BDA+CEA2A

解:(1)根据三角形内角是180°,可知:∠1+2180°﹣∠A,∠B+C180°﹣∠A

∴∠1+2=∠B+C

2)由折叠的性质知:图②的∠1+2就是图①的∠1+2,而由(1)知:1+2=∠B+C

∴在图②中有∠1+2=∠B+C

A60°时,B+∠C180°﹣∠A=120°,

∴∠B+C+1+2120°×2240°

故答案为:=;240°

3)∠BDA+CEA与∠A的关系为:∠BDA+CEA2A

理由如下:如图,延长BDCE的延长线于A,连接AA

∵∠BDA=∠DAA+DAA,∠AEC=∠EAA+EAA,∠DAE=∠DAE

∴∠BDA+AEC2DAE

∴∠BDA+CEA与∠A的关系为:∠BDA+CEA2A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条折线数轴.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:

1)动点P从点A运动至C点需要多少时间?

2PQ两点相遇时,求出相遇点M所对应的数是多少;

3)求当t为何值时,PO两点在数轴上相距的长度与QB两点在数轴上相距的长度相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车专卖店销售甲,乙两种型号的新能源汽车,上周售出甲型汽车和乙型汽车各2辆,销售额为88万元;本周售出3辆甲型汽车和1辆乙型汽车,两周的销售额为184万元.

1)求每辆甲型汽车和乙型汽车的售价;

2)某公司拟向该店购买甲,乙两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,A=D.

(1)求证:ACDE;

(2)BF=13,EC=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:

测试项目

测试成绩/

笔试

75

80

90

面试

93

70

68

根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.

1)扇形统计图中= , 分别计算三人民主评议的得分;

2)根据实际需要,学校将笔试、面试、民主评议三项得分按433的比例确定个人成绩,得分最高者将被选中,通过计算说明三人中谁被选中?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EBC的中点,ABBCDCBCAE平分BAD,下列结论:①AED=90°ADE=CDEDE=BEAD=AB+CD,四个结论中成立的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题再现:

数形结合是一种重要的数学思想方法,借助这种思想方法可将抽象的数学知识变得直观并且具有可操作性.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.

例如:利用图形的几何意义验证完全平方公式.

将一个边长为的正方形的边长增加,形成两个长方形和两个正方形,如图所示:这个图形的面积可以表示成:

这就验证了两数和的完全平方公式.

类比解决:

请你类比上述方法,利用图形的几何意义验证平方差公式.

(要求画出图形并写出推理过程)

问题提出:如何利用图形几何意义的方法证明

如图所示,表示11×1的正方形,即:表示12×2的正方形,恰好可以拼成12×2的正方形,因此:就可以表示22×2的正方形,即:恰好可以拼成一个的大正方形.

由此可得:.

尝试解决:

请你类比上述推导过程,利用图形的几何意义确定:_______.(要求写出结论并构造图形写出推证过程).

问题拓广:

请用上面的表示几何图形面积的方法探究:_______.(直接写出结论即可,不必写出解题过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,DEF分别为ABBCCA上的点,且

(1)求证:

(2),求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车从百货大楼出发送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.

1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请在数轴上标出小明、小红、小刚家的位置.(小明家用点表示,小红家用点表示,小刚家用点表示)

2)求这辆货车此次送货(从出发到返回百货大楼)总共走的路程.

查看答案和解析>>

同步练习册答案