【题目】如图,CB∥OA,∠B=∠A=100°,E,F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF.
(1)求∠EOC的度数.
(2)若平行移动AC,那么∠OCB∶∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
【答案】(1) 40°;(2) 不变, ∠OCB∶∠OFB=1∶2,理由见解析
【解析】(1)由于BC∥OA,∠B=100°,易求∠AOB,而OE、OC都是角平分线,从而可求∠COE;
(2)利用BC∥OA,可知∠AOC=∠BCO,又因为∠AOC=∠COF,所以就有∠FCO=∠FOC,即∠BFO=2∠FCO=2∠OCB,那么∠OCB:∠OFB=1:2;
解:(1)∵CB∥OA,
∴∠BOA+∠B=180°,
∴∠BOA=80°,
∵∠FOC=∠AOC,OE平分∠BOF,
∴∠EOC=∠EOF+∠FOC=∠BOF+∠FOA= (∠BOF+∠FOA)= ×80°=40°;
(2)不变。
∵CB∥OA,
∴∠OCB=∠COA,∠OFB=∠FOA,
∵∠FOC=∠AOC,
∴∠COA=∠FOA,即∠OCB:∠OFB=1:2.
科目:初中数学 来源: 题型:
【题目】下列从左到右的变形是因式分解的是( )
A.(﹣a+b)2=a2﹣2ab+b2
B.m2﹣4m+3=(m﹣2)2﹣1
C.﹣a2+9b2=﹣(a+3b)(a﹣3b)
D.(x﹣y)2=(x+y)2﹣4xy
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x+3的图象与x、y轴交于A、B两点.直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分.求直线l的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往外地,这列货车持A.B两种类型的货厢共50节。已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,问:该储运站需配置A.B两种类型的货厢各几节?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一辆汽车在直线形的公路AB上由A向B行驶,C,D分别是位于公路AB两侧的村庄.
(1)该汽车行驶到公路AB上的某一位置C′时距离村庄C最近,行驶到D′位置时,距离村庄D最近,请在公路AB上作出C′,D′的位置(保留作图痕迹);
(2)当汽车从A出发向B行驶时,在哪一段路上距离村庄C越来越远,而离村庄D越来越近?(只叙述结论,不必说明理由)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com