【题目】某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:
(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;
(2)将条形统计图补充完整;
(3)若规定:假期阅读3本及3本以上课外书者为完成假期作业,据此估计该校1500名学生中,完成假期作业的有多少名学生?
【答案】
(1)解:被抽查学生人数为:10÷20%=50(人),中位数是3本;
(2)解:阅读量为4本的人数为:50﹣4﹣10﹣15﹣6=15(人),补全条形统计图如图:
(3)解: ×1500=1080(本),
答:估计该校1500名学生中,完成假期作业的有1080名学生.
【解析】(1)由中位数的定义可得出中位数是第25、26个两个数的平均数,这两个数均处于第3组(3本)内,因此中位数就是3本;(2)求出第4组的数量为15人,补出小长方形即可;(3) 用样本的特性可以估计总体的特性,可以用1500乘以样本的相应百分比.
【考点精析】解答此题的关键在于理解中位数、众数的相关知识,掌握中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数.
科目:初中数学 来源: 题型:
【题目】阅读下列材料:我们在学习二次根式时,式子有意义,则x≥0;式子有意义,则x≤0;若式子+有意义,求x的取值范围. 这个问题可以转化为不等式组来解决,即求关于x的不等式组x≥0,x≤0的解集,解这个不等式组,得x=0. 请你运用上述的数学方法解决下列问题:
(1)式子+有意义,求x的取值范围;
(2)已知y=+-3,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,教师出示某区篮球赛积分表如下:
(1)从表中可以看出,负一场积多少分,胜一场积多少分;
(2)请你帮忙算出二队胜了多少场?
(3)在这次比赛中,一个队胜场总积分能不能等于它的负场总积分?
(4)在计算五队、六队胜出场次的时候,老师还没等同学们计算出来就立刻说出了答案,老师解释说:“我是通过找到积分与胜场之间的数量关系求出来的”,请你说出其中的奥秘.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得到△CFE.
(1)求证:四边形ADCF是平行四边形.
(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连结PE、PF、PG、PH,则△PEF和△PGH的面积和为( )
A. 5 B. 6
C. 7 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一条对角线平分一组对角的四边形叫做筝形.
探究:(1)如图1,四边形ABCD中,AB=BC,AD=DC,求证:四边形ABCD是筝形;
(2)下列关于筝形的性质表述正确的是 ;(把你认为正确的序号填在横线上)
①筝形的对角线互相垂直平分; ②筝形中至少有一对对角相等;
③筝形是轴对称图形; ④筝形的面积等于两条对角线长的积的一半.
应用:
(3)如图2,在筝形ABCD中,AB≠AD,若∠ABC=60°,∠ADC=30°,AD=4,请求出对角线BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB为⊙O的直径,CD为⊙O的弦,CD∥AB,过点B的切线与射线AD交于点M,连接AC,BD.
(1)如图l,求证:AC=BD;
(2)如图2,延长AC、BD交于点F,作直径DE,连接AE、CE,CE与AB交于点N,求证:∠AFB=2∠AEN;
(3)如图3,在(2)的条件下,过点M作MQ⊥AF于点Q,若MQ:QC=3:2,NE=2,求QF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一个四边形纸片ABCD,∠B=∠D=,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.
(1)试判断B′E与DC的位置关系;并说明理由.
(2)如果∠C=,求∠AEB的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com