精英家教网 > 初中数学 > 题目详情
4.把m3-9m分解因式正确的是(  )
A.m(m2-9)B.m(m-3)2C.m(m+3)(m-3)D.m(m+9)(m-9)

分析 原式提取m,再利用平方差公式分解即可.

解答 解:原式=m(m2-9)
=m(m+3)(m-3).
故选C.

点评 此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l,l分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象.请你写出一个正确的说法:如答案不唯一,如①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了10分钟就到达培训中心;等..

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.直接写出线段AF与BD之间的数量关系.
(2)类比猜想:如图②,当△ABC为以BC为斜边的等腰直角三角形,D是△ABC边BA上一动点(点D 与点B不重合),连接DC,以DC为斜边在BC上方作等腰直角△FDC,连接AF. 请直接写出它们的数量关系.
(3)深入探究:
Ⅰ.如图③,当△ABC为以BC为底边的等腰三角形,D是△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为底边在BC上方作等腰△FDC,∠BC A=∠DCF,且∠BAC=α,连接AF.线段AF与BD之间的有什么数量关系?证明你发现的结论;
Ⅱ.如图④,当△ABC为任意三角形,D是△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作△FDC∽△ABC,且$\frac{BC}{AC}$=k,连接AF.线段AF与BD之间的有什么数量关系?直接写出你发现的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列各式计算正确的是(  )
A.$\sqrt{3}-\sqrt{2}$=1B.a6÷a2=a3C.x2+x3=x5D.(-x23=-x6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在?ABCD中,点E在BC边上,且AE⊥BC于点E,ED平分∠CDA,若BE:EC=1:2,则∠BCD的度数为120°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:如图,AC和BD相交于点O,OA=OC,OB=OD.
(1)求证:AB∥CD.
(2)取线段OD的中点M,取线段OC的中点N,求$\frac{MN}{AB}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,把△COD扩大后得到△AOB,若点C,D,B的坐标分别为C(1,2),D(2,0),B(5,0).则点A的坐标为(  )
A.(2,5)B.(2.5,5)C.(2,5)D.(3,6)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.“抢红包”是2015年春节十分火爆的一项网络活动,某企业有4000名职工,从中随机抽取350人,按年龄分布和对“抢红包”所持态度情况进行了调查,并将调查结果绘成了条形统计图和扇形统计图.

(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?
(2)如果把对“抢红包”所持态度中的“经常(抢红包)”和“偶尔(抢红包)”统称为“参与抢红包”,那么这次接受调查的职工中“参与抢红包”的人数是多少?
(3)请估计该企业“从不(抢红包)”的人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,过正方形ABCD的顶点B作直线l,过点A,C作直线l的垂线,垂足分别为E,F,直线AE交CD于点G.
(1)求证:△ABE≌△BCF;
(2)若∠CBF=65°,求∠AGC的度数.

查看答案和解析>>

同步练习册答案