精英家教网 > 初中数学 > 题目详情

【题目】如图,某渔船向正东方向以12海里/时的速度航行,在A处测得岛C在北偏东的60°方向,1小时后渔船航行到B处,测得岛C在北偏东的30°方向,已知该岛周围10海里内有暗礁.

(1)B处离岛C有多远?

(2)如果渔船继续向东航行,有无触礁危险?

【答案】(1)B处离岛C12海里;(2)没有触礁危险.

【解析】

(1)CCO垂直AB,,通过证明∠ACBCAB=30,即可求出CB的长;

(2)求出点CAB的距离是否大于10,如果大于10则无触礁危险,反之则有.

(1)过CCO垂直AB,

CO为渔船向东航行到C道最短距离

∵在A处测得岛C在北偏东的60°

∴∠CAB=30°

又∵B处测得岛C在北偏东30°,

∴∠CBO=60°,ABC=120°,

∴∠ACB=CAB=30°,

AB=BC=12×1=12(海里)(等边对等角);

(2)COAB,CBO=60°

CO=6(海里)>10(海里)

故如果渔船继续向东航行,没有触礁危险

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】RtABC中,ABACD点为RtABC外一点,且BDCDDF为∠BDA的平分线,当∠ACD15°,下列结论:①∠ADC45°;②ADAF;③AD+AFBD;④BCCE2D,其中正确的是( )

A.①③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某经销商销售一种产品,这种产品的成本价为10/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:

(1)求yx之间的函数关系式,并写出自变量x的取值范围;

(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为(  )

A. 50m B. 25m C. (50﹣)m D. (50﹣25)m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,线段AMBC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边CDE,连结BE

(1)求∠CAM的度数;

(2)若点D在线段AM上时,求证:ADCBEC

(3)当动D直线AM上时,设直线BE与直线AM的交点为O,试判断AOB是否为定值?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C上,另两个顶点AB分别在上,则的值是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,CDBEDGBC于点 GEFBC于点 F,且 DG=EF.

1)求证:DGC≌△EFB.

2)连结 BDCE. 求证:BD=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0.1<x2<2.下列结论:4a+2b+c<0;2a+b<0;b2+8a>4ac;

a<﹣1;其中结论正确的有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为平行四边形ABCD的边AD上的一点,EF分别为PBPC的中点,PEFPDCPAB的面积分别为SS1S2.若S=3,则S1+S2的值为( )

A. 3 B. 6 C. 12 D. 24

查看答案和解析>>

同步练习册答案