【题目】已知:平行四边形ABCD的两边AB、AD的长是关于x的方程x2﹣mx+ =0的两个实数根.
(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么平行四边形ABCD的周长是多少?
【答案】
(1)解:∵四边形ABCD是菱形,
∴AB=AD,
∵△=m2﹣4×( )=m2﹣2m+1=(m﹣1)2=0,
∴当(m﹣1)2=0时,即m=1时,四边形ABCD是菱形.
把m=1代入x2﹣mx+ =0中,得:x2﹣x+ =0,
解得:x1=x2= ,
∴菱形ABCD的边长是
(2)解:把x=2代入x2﹣mx+ =0中,得:4﹣2m+ =0,
解得:m= ,
把m= 代入x2﹣mx+ =0中,得:x2﹣ x+1=0,
解得:x1=2,x2= ,
∴AD= .
∵四边形ABCD是平行四边形,
∴平行四边形ABCD的周长是5
【解析】(1)根据菱形的性质可得出AB=AD,根据根的判别式△=0即可求出m的值,将其代入原方程,解方程即可求出菱形的边长;(2)将x=2代入原方程求出m的值,再将m的值代入原方程,解方程即可求出平行四边形的临边,结合平行四边形的周长即可得出结论.
【考点精析】利用根与系数的关系和平行四边形的性质对题目进行判断即可得到答案,需要熟知一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:
①当x>0时,y>0;
②若a=﹣1,则b=4;
③抛物线上有两点P(x1 , y1)和Q(x2 , y2),若x1<1<x2 , 且x1+x2>2,则y1>y2;
④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6 .
其中真命题的序号是( )
A.①
B.②
C.③
D.④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ACB中,∠C=90°,点O是AB的中点,点M,N分别在边AC,BC上,OM⊥ON,连MN,AC=4,BC=8,设AM=a,BN=b,MN=c.
(1)求证:a2+b2=c2;
(2)①若a=1,求b;②探究a与b的函数关系;
(3)△CMN面积的最大值为(不写解答过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2﹣px+ ﹣ .
(1)若抛物线与y轴交点的坐标为(0,1),求抛物线与x轴交点的坐标;
(2)证明:无论p为何值,抛物线与x轴必有交点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=4,BC=3,将△ABC绕点A逆时针旋转,使点B落在线段AC上的点D处,点C落在点E处,则C、E两点间的距离为( )
A.
B.2
C.3
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解题:我们知道一元二次方程是转化为一元一次方程来解的,例如:解方程x2﹣2x=0,通过因式分解将方程化为x(x﹣1)=0,从而得到x=0或x﹣2两个一元一次方程,通过解这两个一元一次方程,求得原方程的解.
(1)利用上述方法解一元二次不等式:2x(x﹣1)﹣3(x﹣1)<0;
(2)利用函数的观点解一元二次不等式x2+6x+5>0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,用高为6cm,底面直径为4cm的圆柱A的侧面积展开图,再围成不同于A的另一个圆柱B,则圆柱B的体积为( )
A.24πcm3
B.36πcm3
C.36cm3
D.40cm3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com