精英家教网 > 初中数学 > 题目详情

【题目】给下列证明过程填写理由.

如图,CDABD,点FBC上任意一点,EFABE∠1=∠2,求证:ACB=∠3

请阅读下面解答过程,并补全所有内容.

解:CDABEFAB(已知)

∴∠BEF=∠BDC=90°

EFDC

∴∠2=________

∵∠2=∠1(已知)

∴∠1=_______(等量代换)

DGBC

∴∠3=________

【答案】答案见解析

【解析】

先根据CDABDFEAB得出CDEF,故可得出∠2=DCB;再根据∠1=2得出DGBC,再由平行线的性质即可得出结论.

CDABEFAB(已知)

∴∠BEF=BDC=90° 垂直定义

EFDC 同位角相等,两直线平行)

∴∠2=__BCD______ 两直线平行,同位角相等)

又∵∠2=1(已知)

∴∠1=___BCD ____(等量代换)

DGBC(内错角相等,两直线平行)

∴∠3=_ACB_______(两直线平行,同位角相等)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一次试验中,小明把一根弹簧的上端固定,在其下端悬挂物体,测得弹簧的长度与所挂物体的质量之间的关系如下表:

所挂物体质量

0

1

2

3

4

5

弹簧的长度

8

10

12

14

16

18

下列说法错误的是(

A.弹簧的长度随所挂物体质量的变化而变化,所挂物体质量是自变量,弹簧长度是因变量

B.不挂物体时,弹簧的长度为

C.弹簧的长度与所挂物体的质量之间的关系式是

D.在弹性限度内,当所挂物体的质量为时,弹簧的长度为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,边AC的长为,将一块边长足够大的三角板的直角顶点放在点O处,将三角板绕点O旋转,始终保持三角板的一条直角边与 AC相交,交点为点D,另一条直角边与BC相交,交点为点E.证明:等腰直角三角形ABC的边被三角板覆盖部分的两条线段CD与CE长度之和为定值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=2,C=D,求证:∠A=F.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,每个小正方形的边长为1,在方格纸内将ABC经过一次平移后得到ABC,图中标出了点B的对应点B,利用网格点画图和无刻度的直尺画图并解答(保留画图痕迹):

1)画出ABC

2)画出ABC的高,即线段BD

3)连接AA CC,那么AACC的关系是________;线段AC扫过图形的面积为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=a1(x﹣2)2+2与y=a2(x﹣2)2﹣3的顶点分别为A,B,与x轴分别交于点O,C,D,E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为等腰直角三角形,∠ABC=90°,AB=BC,点Ax轴的负半轴上,点By轴上的一个动点,点C在点B的上方,

(1)如图1当点A的坐标为(﹣3,0),点B的坐标为(0,1)时,求点C的坐标;

(2)设点A的坐标为(a,0),点B的坐标为(0,b).过点CCDy轴于点D,在点B运动过程中(不包含ABC的一边与坐标轴重合的情况),猜想线段OD的长与a、b的数量关系,并说明理由;

(3)在(2)的条件下如图4,当x轴平分∠BAC时,BCx轴于点E,过点作CFx轴于点F.说明此时线段CFAE的数量关系(用含a、b的式子表示).

查看答案和解析>>

同步练习册答案