精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,边AC的长为,将一块边长足够大的三角板的直角顶点放在点O处,将三角板绕点O旋转,始终保持三角板的一条直角边与 AC相交,交点为点D,另一条直角边与BC相交,交点为点E.证明:等腰直角三角形ABC的边被三角板覆盖部分的两条线段CD与CE长度之和为定值

【答案】见解析.

【解析】

连接OC,证明OCD≌△OBE,根据全等三角形的性质得到CD=BE,证明结论.

连接OC.

AC=BC,AO=BO,ACB=90°.

∴∠ACO=BCO=ACB=45°,OCAB.

A=B=45°.

OC=OB.

∵∠BOE+EOD+AOD=180°,EOD=90°.

∴∠BOE+AOD=90°.

又∵∠COD+AOD=90°,

∴∠BOE=COD.

又∠OCD=B=45°,

∴△OCD≌△OBE.

CD=BE.

CD+CE=BE+CE=BC=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了安全,请勿超速,如图所示是一条已经建成并通车的公路,且该公路的某直线路段MN上限速17m/s,为了检测来往车辆是否超速,交警在MN旁设立了观测点C.若某次从观测点C测得一汽车从点A到达点B行驶了5秒钟,已知∠CAN=45°,CBN=60°,BC=200m.

(1)求观测点C到公路MN的距离;

(2)请你判断该汽车是否超速?(参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各式:

1)解不等式,并把它的解集在数轴上表示出来.

2)解方程组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示ABDEACDFAC=DF下列条件中不能判断ABC≌△DEF的是(  )

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.

(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?

(2)若单独租用一台车,租用哪台车合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】历史上对勾股定理的一种证法采用了如图所示图形,其中两个全等的直角三角形边AE,EB在一条直线上.证明中用到的面积相等关系是 ( )

A. SEDA=SCEB

B. SEDA +SCEB=SCDB

C. S四边形CDAE= S四边形CDEB

D. SEDA+SCDE+SCEB= S四边形ABCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给下列证明过程填写理由.

如图,CDABD,点FBC上任意一点,EFABE∠1=∠2,求证:ACB=∠3

请阅读下面解答过程,并补全所有内容.

解:CDABEFAB(已知)

∴∠BEF=∠BDC=90°

EFDC

∴∠2=________

∵∠2=∠1(已知)

∴∠1=_______(等量代换)

DGBC

∴∠3=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.

(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;

(2)小明选择哪家快递公司更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,点P是平行四边形ABCD对角线ACBD的交点,若SPAB=S1SPBC=S2SPCD=S3SPAD=S4S1S2S3S4的关系为S1=S2=S3=S4.请你说明理由;

2)变式1:如图2,点P是平行四边形ABCD内一点,连接PAPBPCPD.若SPAB=S1SPBC=S2SPCD=S3SPAD=S4,写出S1S2S3S4的关系式;

3)变式2:如图3,点P是四边形ABCD对角线ACBD的交点若SPAB=S1SPBC=S2SPCD=S3SPAD=S4,写出S1S2S3S4的关系式.请你说明理由.

查看答案和解析>>

同步练习册答案