精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,在平行四边形ABCD中,BF平分∠ABCAD于点FAEBF于点O,交BC于点E,连接EF

1)求证:四边形ABEF是菱形;

2)若AE12BF16CE5,求四边形ABCD的面积.

【答案】1)见解析;(2)四边形ABCD的面积为144

【解析】

1)根据平行四边形对边平行的性质和BF平分∠ABC,可得∠AFB=∠ABF,进而得出AB=AF,再证明△ABO≌△EBOAB=BE,最后得出四边形ABEF是菱形;
2)作AGBC于点G,根据勾股定理以及菱形的性质先求出BE的长,再利用菱形面积公式求出AG的长,最后即可求得四边形ABCD的面积.

1)证明:∵四边形ABCD是平行四边形,

ADBC,∴∠AFB=∠FBE

BF平分∠ABC,∴∠ABF=∠EBF

∴∠AFB=∠ABF,∴AFAB

AEBF,∴∠AOB=∠EOB90°,

OBOB,∠ABO=∠EBO

∴△ABO≌△EBOASA),

ABBE=AF

AFBE

∴四边形ABEF是平行四边形,

ABBE

∴平行四边形ABEF是菱形;

2)如图,作AGBC于点G

∵四边形ABEF是菱形,

OEAE6OBBF8

∴在RtOBE中,BE10

S菱形ABEF=×AE×BF=BE×AG

×12×16=10×AG,∴AG

∴四边形ABCD的面积为:BCAG=(10+5)×144

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC的三边上,分别取点DEF,使AD=BE=CF

1)求证:△DEF是等边三角形.

2)若2BE=EC,求∠FEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点。

该学习小组成员意外的发现图(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图和图中发现的结论选择其一说明理由。

试探究图中BN、CN、CM、DN这四条线段之间的数量关系,写出你的结论,并说明理由。

将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之 间所满足的数量关系(不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现如今,垃圾分类意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.

(1)直接写出甲所拿的垃圾恰好是厨余垃圾的概率;

(2)求乙所拿的两袋垃圾不同类的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学对本校初2017500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),请根据统计图提供的信息,回答下列问题:

(1)该校毕业生中男生有 人;扇形统计图中a=

(2)补全条形统计图;

(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB⊙O的直径,AC⊙O的切线,OC⊙O于点DBD的延长线交AC于点E

1)求证:∠1=∠CAD

2)若AE=EC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC 是等腰直角三角形,∠ABC=90°,AB平行x 轴,点C x 轴上,若点AB分别在正比例函数 y=6x y=kx 的图象上,则 k=__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣10),其部分图象如图所示,下列结论:

①4acb2

方程 的两个根是x1=1x2=3

③3a+c0

y0时,x的取值范围是﹣1≤x3

x0时,yx增大而增大

其中结论正确的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步练习册答案