精英家教网 > 初中数学 > 题目详情
10.已知在一个样本中,50个数据分别落在5个组中,第1,2,3,4组的数据个数分别为3,10,12,15,那么第5组的频数为10,百分比为20%.

分析 第5组的频数应用总数50减去第1,2,3,4组的数据个数分别为3,10,12,15可得答案;利用第5组的频数÷总数50.

解答 解:第5组的频数为:50-3-10-12-15=10,
百分比:$\frac{10}{50}$×100%=20%,
故答案为:10;20%.

点评 此题主要考查了频数与频率,关键是掌握频数是指每个对象出现的次数.频率是指每个对象出现的次数与总次数的比值(或者百分比).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.阅读下列材料,解答下面的问题:
我们知道方程2x+3y=12有无数个解,但在实际生活中我们往往只需求出其正整数解.
例:由2x+3y=12,得:y=$\frac{12-2x}{3}$=4-$\frac{2}{3}$x(x、y为正整数).要使y=4-$\frac{2}{3}$x为正整数,则$\frac{2}{3}$x为正整数,由2,3互质,可知:x为3的倍数,从而x=3,代入y=4-$\frac{2}{3}$x=2.所以2x+3y=12的正整数解为$\left\{\begin{array}{l}x=3\\ y=2\end{array}$
问题:
(1)请你直接写出方程3x-y=6的一组正整数解$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$.
(2)若$\frac{12}{x-3}$为自然数,则满足条件的正整数x的值有B个.
A.5           B.6           C.7           D.8
(3)七年级某班为了奖励学生学习的进步,购买为单价3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案,写出购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-3,2),B(-5,1),C(-2,0),点P(a,b)是△ABC的AC边上的一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+5,b+2).
(1)画出平移后的△A1B1C1,写出A1的坐标;
(2)说明△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知D为AF的中点,BF=2FC,求AE:BE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,某时刻太阳光从窗户射入室内,与地面的夹角∠ADC为60°,窗户的高AB在阳光下的投影为CD,此时测得CD的长为0.8m,求窗户的高.(精确到0.1m,参考数据:$\sqrt{2}$=1.414,$\sqrt{3}$=1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.现有三张不透明的卡片A,B,C,他们背面完全一样,正面分别画有圆、长方形和等腰三角形,将三张卡片背面朝上,洗匀后放在桌子上.
(1)从中随机抽取一张卡片,正面的图形是中心对称图形的概率为$\frac{2}{3}$.
(2)从中随机抽取一张卡片,放回后洗匀,在随机抽取一张卡片.请用列表法或画树状图的方法,求两次抽取的卡片正面图形都是中心对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,已知在平面直角坐标系中,抛物线y=ax2+bx+3经过A(-1,0),B(3,0)两点,且与y轴交于点C.
(1)求抛物线的解析式及顶点D的坐标;
(2)设△COB沿x轴正方向平移t(0<t≤3)个单位长度时,△COB与△CDB重叠部分的面积为S,求S与t之间的函数关系式,并指出t的取值范围;
考生请注意:下面的(3),(4),(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记哟!
(3)点P是x轴上的一个动点,过点P作直线l∥AC交抛物线与点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;
(4)设点Q是y轴右侧抛物线上异于点B的点,过点Q做QP∥x轴交抛物线于另一点P,过P做PH⊥x轴,垂足为H,过Q做QG⊥x轴,垂足为G,则四边形QPHG为矩形.试探究在点Q运动的过程中矩形QPHG能否成为正方形?若能,请直接写出符合条件的点Q的坐标;若不能,请说明理由;
(5)试探究,在y轴右侧的抛物线上是否存在一点Q,使△QDC是等腰三角形?若存在,请直接写出符合条件的点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是(  )
A.如图1,展开后测得∠1=∠2
B.如图2,展开后测得∠1=∠2且∠3=∠4
C.如图3,测得∠1=∠2
D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:|-4|+(-$\sqrt{2}$)0-($\frac{1}{2}$)-1

查看答案和解析>>

同步练习册答案