精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O上的点,C是⊙O上的点,点DAB的延长线上,∠BCD=BAC.

(1)求证:CD是⊙O的切线;

(2)若∠D=30°,BD=2,求图中阴影部分的面积.

【答案】(1)证明见解析;(2)阴影部分面积为

【解析】1)连接OC,易证∠BCD=OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=BCD+OCB=90°,CD是⊙O的切线

(2)设⊙O的半径为r,AB=2r,由于∠D=30°,OCD=90°,所以可求出r=2,AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.

1)如图,连接OC,

OA=OC,

∴∠BAC=OCA,

∵∠BCD=BAC,

∴∠BCD=OCA,

AB是直径,

∴∠ACB=90°,

∴∠OCA+OCB=BCD+OCB=90°

∴∠OCD=90°

OC是半径,

CD是⊙O的切线

(2)设⊙O的半径为r,

AB=2r,

∵∠D=30°,OCD=90°,

OD=2r,COB=60°

r+2=2r,

r=2,AOC=120°

BC=2,

∴由勾股定理可知:AC=2

易求SAOC=×2×1=

S扇形OAC=

∴阴影部分面积为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,已知点 A(﹣3,0),B(0,4),对△OAB 连续作旋转变换,依次得到三角形(1),(2),(3),(4)…,则三角形(2019)的直角顶点的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形 AOBC 的三个顶点的坐标分别为 O(00)A(03) B(40),按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧, 分别交 OCOB 于点 DE;②分别以点 DE 为圆心,大于 DE 的长为半径作弧,两弧在∠BOC 内交于点 F;③作射线 OF,交边 BC于点 G,则点 G 的坐标为( )

A. (4 )B. ( 4)C. ( 4)D. (4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2:

(1)求反比例函数的表达式;

(2)将直线l1:y=﹣x向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为( ).

A. 2B. 2C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,连接AC,BD交于点M.填空:

的值为   

②∠AMB的度数为   

(2)类比探究

如图2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,连接ACBD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;

(3)拓展延伸

在(2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有AB两地,甲骑自行车从A地到B地;乙骑电动车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离ykm)与行驶时xh)之间的函数图象,根据图象解答以下问题:

1)写出AB两地之间的距离;

2)直接写出yyx之间的函数关系式,请求出点M的坐标,并解释该点坐标所表示的实际意义;

3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为124AB的长度是13米,MN是二楼楼顶,MN∥PQCMN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC约为多少米?( sin42°≈07tan42°≈09

查看答案和解析>>

同步练习册答案