【题目】根据以下10个乘积,回答问题:
11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;20×20.
(1)将以上各乘积分别写成“a2﹣b2”(两数平方)的形式,将以上10个乘积按照从小到大的顺序排列起来;
(2)用含有a,b的式子表示(1)中的一个一般性的结论(不要求证明);
(3)根据(2)中的一般性的结论回答下面问题:某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案方案:第一次提价p%,第二次提价q%;方案2:第一、二次提价均为%,其中p≠q,比较哪种方案提价最多?
【答案】(1)答案见解析;(2)对于:ab,当|b﹣a|越大时,ab的值越小;(3)方案2提价最多.
【解析】
(1)根据题目中的式子和平方差公式可以解答本题;
(2)根据(1)中的计算结果,可以写出相应的结论;
(3)根据题意列出代数式,根据(2)中的结论可以解答本题.
(1)11×29=(20﹣9)×(20+9)=202﹣92,
12×28=(20﹣8)×(20+8)=202﹣82,
13×27=(20﹣7)×(20+7)=202﹣72,
14×26=(20﹣6)×(20+6)=202﹣62
15×25=(20﹣5)×(20+5)=202﹣52,
16×24=(20﹣4)×(20+4)=202﹣42
17×23=(20﹣3)×(20+3)=202﹣32,
18×22=(20﹣2)×(20+2)=202﹣22,
19×21=(20﹣1)×(20+1)=202﹣12,
20×20=(20+0)×(20﹣0)=202﹣02,
11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<20×20;
(2)由(1)可得:对于ab,当|b﹣a|越大时,ab的值越小;
(3)设原价为a,则
方案1:a(1+p%)(1+q%)
方案2:a(1)2
∵|1+p%﹣(1+q%)|=|(p﹣q)%|,
|1(1)|=0.
∵p≠q,
∴|(p﹣q)%|>0,
∴由(2)的结论可知:
方案2提价最多.
科目:初中数学 来源: 题型:
【题目】关于函数y=﹣2x+1,下列结论正确的是( )
A. 图象必经过点(﹣2,1) B. 图象经过第一、二、三象限
C. 当x>时,y<0 D. y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:
①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有_____(将所有正确答案的序号填写在横线上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形是由等边和顶角为120°的等腰三角形拼成,将一个60°角顶点放在点处,60°角两边分别交直线于,交直线于两点.
(1)当都在线段上时,探究之间的数量关系,并证明你的结论;
(2)当在边的延长线上时,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于实数a,b,我们可以用min{a,b}表示a,b两数中较小的数,例如min{3,-1}=-1,min{2,2}=2. 类似地,若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的“取小函数”.
(1)设y1=x,y2=,则函数y=min{x, }的图像应该是 中的实线部分.
(2)请在下图中用粗实线描出函数y=min{(x-2)2, (x+2)2}的图像,并写出该图像的三条不同性质:
① ;
② ;
③ ;
(3)函数y=min{(x-4)2, (x+2)2}的图像关于 对称.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向海里的C处,为了防止某国还巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,CD和BE是△ABC的两条高,∠BCD=45°,BE与CD交于点H.
(1)求证:△BDH≌△CDA;
(2)求证:BH=2AE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:
(1)该校近四年保送生人数的极差是 .请将折线统计图补充完整;
(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com