精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB6AC8BC10P为边BC上一动点(且点P不与点BC重合),PEABEPFACFMEF中点.设AM的长为x,则x的取值范围是______

【答案】2.4x4

【解析】

根据勾股定理的逆定理求出ABC是直角三角形,得出四边形AEPF是矩形,求出AM=EF=AP,求出AP≥4.8,即可得出答案.

解:连接AP

AB=6AC=8BC=10

AB2+AC2=36+64=100BC2=100

AB2+AC2=BC2

∴∠BAC=90°

PEABPFAC

∴∠AEP=AFP=BAC=90°

∴四边形AEPF是矩形,

AP=EF

∵∠BAC=90°MEF中点,

AM=EF=AP

APBC时,AP值最小,

此时SBAC=×6×8=×10×AP

AP=4.8

AP的范围是AP≥4.8

2AM4.8

AM的范围是AM≥2.4(即x≥2.4

PC重合时,AM=4

PBC不重合,

x4

故答案为:2.4≤x4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径作⊙O ,交BC于点D,交CA的延长线于点E,连接ADDE

1)求证:DBC的中点

2)若DE=3 AD1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以AB为直径的⊙OBC于点D,过点DDEACAC于点EAC的反向延长线交⊙O于点F

(1)试判断直线DE与⊙O的位置关系,并说明理由;

(2)若∠C30°,⊙O的半径为6,求弓形AF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.

(1)求证:AB是O的切线;

(2)若CF=4,DF=,求⊙O的半径r及sinB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系,直线y轴交于点A,与双曲线交于点

1)求点B的坐标及k的值;

2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若的面积为6,求直线CD的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:

在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),

以AD为边在AD右侧作正方形ADEF,连接CF.

(1).如图1,当点D在线段BC上时,

①.BC与CF的位置关系为:________________________________.

②.BC,CD,CF之间的数量关系为:_______________________________.

(2).如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,

请给予证明;若不成立,请你写出正确结论再给予证明.

(3).如图3,将图2中的 AB=AC改变成AB=kAC,正方形ADEF改成矩形ADEF,且AD=kAF,其它条件不变 ,猜想线段BD与CF之间的关系,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:有这样一个问题:关于的一元二次方程有两个不相等的且非零的实数根探究满足的条件.

小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程对应的二次函数为

②借助二次函数图象,可以得到相应的一元二次中满足的条件,列表如下:

方程根的几何意义:

方程两根的情况

对应的二次函数的大致图象

满足的条件

方程有两个不相等的负实根

____________

方程有两个不相等的正实根

____________

____________

1)参考小明的做法,把上述表格补充完整;

2)若一元二次方程有一个负实根,一个正实根,且负实根大于-1,求实数的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校初三年级进行女子800米测试,甲、乙两名同学同时起跑,甲同学先以a/秒的速度匀速跑,一段时间后提高速度,以/秒的速度匀速跑,b秒到达终点,乙同学在第60秒和第140秒时分别减慢了速度,设甲、乙两名同学所的路程为s(米),乙同学所用的时间为t(秒),st之间的函数图象如图所示.

1)乙同学起跑的速度为______/秒;

2)求ab的值;

3)当乙同学领先甲同学60米时,直接写出t的值是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.

收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:

91

89

77

86

71

31

97

93

72

91

81

92

85

85

95

88

88

90

44

91

84

93

66

69

76

87

77

82

85

88

90

88

67

88

91

96

68

97

59

88

整理、描述数据:按如下数据段整理、描述这两组数据

分段

学校

30≤x≤39

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

1

1

0

0

3

7

8

   

   

   

   

   

   

   

分析数据:两组数据的平均数、中位数、众数、方差如下表:

统计量

学校

平均数

中位数

众数

方差

81.85

88

91

268.43

81.95

86

m

115.25

经统计,表格中m的值是   

得出结论:

a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为   

b可以推断出   学校学生的数学水平较高,理由为   .(至少从两个不同的角度说明推断的合理性)

查看答案和解析>>

同步练习册答案