【题目】已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是 .
科目:初中数学 来源: 题型:
【题目】综合与实践:
问题情境:
在数学综合与实践课上,张老师启示大家利用直线、线段以及点的运动变换进行探究活动.变换条件如下:如图 1,直线 AB,AC,BC 两两相交于 A,B,C 三点,得知△ABC是等边三角形,点 E 是直线 AC 上一动点(点 E 不与点 A,C 重合),点 F 在直线 BC上,连接 BE,EF,使 EF=BE.
独立思考:
(1)张老师首先提出了这样一个问题:如图 1,当E是线段 AC 的中点时,确定线段 AE与 CF 的数量关系,请你直接写出结论:AE____ CF(填“>” “<”或“=”).
提出问题:
(2)“奋斗”小组受此问题的启发,提出问题:若点E是线段 AC 上的任意一点,其他条件不变,(1)中的结论是否成立?该小组认为结论仍然成立,理由如下:如图 2,过点 E作 ED∥BC,交 AB 于点 D. (请你补充完整证明过程)
拓展延伸:
(3)“缜密”小组提出的问题是:动点E的运动位置如图3,图4所示,其他条件不变,根据题意补全图形,并判断线段AE与CF的数量关系是否发生变化? 请你选择其中一种予以证明.
(4)“爱心”小组提出的问题是:若等边△ABC 的边长为 ,AE=1,则BF 的长为__________.(请你直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.试判断线段AB与DE的数量关系和位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料
小明遇到这样一个问题:求计算所得多项式的一次项系数.
小明想通过计算所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.
他决定从简单情况开始,先找所得多项式中的一次项系数,通过观察发现:
也就是说,只需用中的一次项系数1乘以中的常数项3,再用中的常数项2乘以中的一次项系数2,两个积相加,即可得到一次项系数.
延续上面的方法,求计算所得多项式的一次项系数,可以先用的一次项系数1,的常数项3,的常数项4,相乘得到12;再用的一次项系数2,的常数项2,的常数项4,相乘得到16;然后用的一次项系数3,的常数项2的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.
参考小明思考问题的方法,解决下列问题:
(1)计算所得多项式的一次项系数为____________________.
(2)计算所得多项式的一次项系数为_____________.
(3)若是的一个因式,求、的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点分别为A(2,3)、B(4,2)、C(﹣2,﹣3)
(1)写出A点关于x轴对称的点的坐标 ;写出B点关于y轴对称的点的坐标 .
(2)请在图中作出△ABC关于x轴对称的△DEF(A、B、C的对应点分别是D、E、F);
(3)求三角形ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.
(1)求函数y=和y=kx+b的解析式;
(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AC上取点B,在其同一侧作两个等边三角形△ABD 和△BCE ,连接AE,CD与GF,下列结论正确的有( )
① AE DC;②AHC120;③△AGB≌△DFB;④BH平分AHC;⑤GF∥AC
A.①②④B.①③⑤C.①③④⑤D.①②③④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com