精英家教网 > 初中数学 > 题目详情

【题目】以墙(长度不限)为一边,再用长为13m的铁丝为另外三边,围成面积为20的长方形.已知长大于宽,则长方形的长、宽分别是( )

A. 5m,4m或9m,2 m B. 9m,2m C. 10m,1.5m D. 8m,2.5m或5m,4m

【答案】D

【解析】

先根据题意设长方形的长为x米,如果以墙为长方形的长边,长方形的宽为(13-x)米,利用面积20作为相等关系列一元二次方程,求解即可.

设长方形的长为x米,如果以墙为长方形的长边,长方形的宽为(13-x)米,

(13-x)x=20,

(13-x)x=40,

x2-13x+40=0,

(x-5)(x-8)=0,

x-5=0x-8=0,

x=5x=8,

x=5米时,长方形的宽=20÷5=4米<长方形的长

x=8米时,长方形的宽=20÷8=2.5米<长方形的长.

所以长方形的长是5米或8米,宽对应的是4米或2.5米.

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=m(x+3)2+ny=m(x﹣2)2+n+1交于点A.过点Ax轴的平行线,分别交两条抛物线于点B、C(点B在点C左侧),则线段BC的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:

(1)若设每件降价x元、每星期售出商品的利润为y元,请写出yx的函数关系式,并求出自变量x的取值范围;

(2)当降价多少元时,每星期的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=5x+5x轴于点A,交y轴于点C,过AC两点的二次函数yax2+4xc的图象交x轴于另一点B.

(1)求二次函数的表达式;

(2)连接BC,点N是线段BC上的动点,作NDx轴交二次函数的图象于点D,求线段ND长度的最大值;

(3)若点H为二次函数yax2+4xc图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点FE,使四边形HEFM的周长最小,求出点FE的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上顺次有A、B、C三地,甲车从B地出发往A地匀速行驶,到达A地后停止.在甲车出发的同时,乙车也从B地出发往A地匀速行驶,到达A地停留1小时后,调头按原速向C地行驶.若AB两地相距300千米,在两车行驶的过程中,甲、乙两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示,则在两车出发后经过_____小时相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是等边△ABC内一点,且PA=6,PC=8,PB=10,若△APB绕点A逆时针旋转60°后,得到△AP′C,则∠APC=_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的表达式;

(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;

(3)若抛物线上有一动点M,使△ABM的面积等于△ABC的面积,求M点坐标.

(4)抛物线的对称轴上是否存在动点Q,使得△BCQ为等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在反比例函数y= 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图象上运动,若tanCAB=2,则k的值为(

A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+1(k≠0)与反比例函数(m≠0)的图象有公共点A(1,2).直线lx轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.

(1)求一次函数与反比例函数的解析式;

(2)求ABC的面积?

查看答案和解析>>

同步练习册答案