精英家教网 > 初中数学 > 题目详情

【题目】已知:二次函数 中的满足下表:

0

1

2

3

3

0

0

m

(1) 观察上表可求得的值为________

(2) 试求出这个二次函数的解析式;

(3) 若点An+2,y1),Bny2)在该抛物线上,且y1>y2,请直接写出n的取值范围.

【答案】(1)3;(2);(3)n>0

【解析】

(1)观察已知表格中的对应值可知:该函数图象的开口向上,对称轴是直线x=1,由抛物线的对称性可知:x=3时的对应函数值与x= -1时的对应函数值相等即可求得的值

(2)把表中的三个点、(1,-1)、(2, 0)代入函数的解析式,得到关于a,b,c的方程组,即可求得解析式;
(3)根据函数的图象开口方向,增减性即可确定.

(1)观察已知表格中的对应值可知:该函数图象的开口向上,对称轴是直线x=1,

由抛物线的对称性可知:x=3时的对应函数值与x= -1时的对应函数值相等,即m的值为3;

(2)把、(1,-1)、(2, 0)代入二次函数 ,得

解得:

这个二次函数的解析式为

(3)∵该函数图象的开口向上,对称轴是直线x=1,

若点A(n+2,y1),B(n,y2在该抛物线上,且y1>y2,则

A(n+2,y1),B(n,y2在对称轴两侧时,n+2-11-n

解得:

A(n+2,y1),B(n,y2在对称轴同侧(含顶点)时,

综上可知:n的取值范围是n.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化。开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,CD为双曲线的一部分):

(1)分别求出线段AB和曲线CD的函数关系式;

(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC、BD相交于点O,过点OOEBCE点,连接DEOCF点,作FGBCG点,则ABCFGC是位似图形吗?若是,请说出位似中心,并求出相似比;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 C RtACB RtDCE 的公共点ACB=DCE=90°,连 AD、BE,过点 C CFAD 于点 F,延长 FC BE 于点 G. AC=BC=25,CE=15, DC=20,的值为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据海峡导报报道,为推进漳州绿色农业发展, 2018-2020年,漳州市将完成农业绿色发展项目总投资414亿元。已知漳州2018年已完成项目投资100亿元,假设后两年该项目投资的平均增长率为x,依题意可列方程为( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某电视塔AB和楼CD的水平距离为100 m,从楼顶C处及楼底D处测得塔顶A的仰角分别为45°60°,试求塔高为__________,楼高为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面与通道平行),通道水平宽度8米, ,通道斜面 的长为6米,通道斜面的坡度.

(1)求通道斜面的长为 ;

(2)为增加市民行走的舒适度,拟将设计图中的通道斜面的坡度变缓,修改后的通道斜面的坡角为30°,求此时的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.

(1)根据信息填表

产品种类

每天工人数(人)

每天产量(件)

每件产品可获利润(元)

15

(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.

(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.

查看答案和解析>>

同步练习册答案