精英家教网 > 初中数学 > 题目详情

【题目】张大伯计划建一个面积为72平方米的矩形养鸡场,为了节约材料,鸡场一边靠着原有的一堵墙(墙长15米),另外的部分(包括中间的隔墙)用30米的竹篱笆围成,如图.

1)请你通过计算帮助张大伯设计出围养鸡场的方案.

2)在上述条件不变的情况下,能围出比72平方米更大的养鸡场吗?请说明理由.

【答案】1)垂直于墙的一边长为6米,平行于墙的一边长为12; 2)能,理由详见试题解析.

【解析】

1)本题可设一边的长,然后根据三边的长,表示出另一边,再根据矩形的面积=×宽来得出方程,求出未知数的值(要注意墙长15米的条件).

2)根据(1)的等量关系我们就能得出面积与边的函数关系式,根据函数的性质,我们就能判断出72平米是否是最大的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】两个大小不同的等腰直角三角尺如图1所示放置,图2是由它抽象出的几何图形,点在同一条直线上,连接

1)请找出图2中与全等的三角形,并说明理由(说明:结论中不得含有未标识的字母)

2)判断线段是否垂直,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y1=x+4的图象与函数y2= (x0)的图象交于 A(a1)B(1b)两点.

(1)aby2的函数关系式;

(2)观察图象,当x0时,比较y1y2大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.

(1)当点P在线段AC上时,如图1.

依题意补全图1;

EQ=BP,则∠PBE的度数为   ,并证明;

(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是(  )

A. 中位数是12.7% B. 众数是15.3%

C. 平均数是15.98% D. 方差是0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,∠AOC=30°,⊙P的半径为1cm,且OP=6cm,如果P以1cm/s的速度沿由A向B的方向移动,那么多少秒后P与直线CD相切(  )

A. 4或8 B. 4或6 C. 8 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ADBC边上的中线,AEBC边上的高.

1)若∠ACB100°,求∠CAE的度数;

2)若SABC12CD4,求高AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线与x轴的交点坐标分别为A(1,0),B(x2,0)(点B在点A的右侧),其对称轴是x=3,该函数有最小值是﹣2.

(1)求二次函数解析式;

(2)在图1上作平行于x轴的直线,交抛物线于C(x3,y3),D(x4,y4),求x3+x4的值;

(3)将(1)中函数的部分图象(x>x2)向下翻折与原图象未翻折的部分组成图象“G”,如图2,在(2)中平行于x轴的直线取点E(x5,y5)、(x4<x5),结合函数图象求x3+x4+x5的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.

1)如图1,在△ABC中,ABAC,点DAC边上,且ADBDBC,求∠A的大小;

2)在图1中过点C作一条线段CE,使BDCE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;

3)在△ABC中,∠B30°,ADDE是△ABC的三分线,点DBC边上,点EAC边上,且ADBDDECE,请直接写出∠C所有可能的值.

查看答案和解析>>

同步练习册答案