精英家教网 > 初中数学 > 题目详情

【题目】如图,的半径为的直径,上一点,连接.为劣弧的中点,过点,垂足为于点,交的延长线于点.

1)求证:的切线;

2)连接,若,如图2.

①求的长;

②图中阴影部分的面积等于_________.

【答案】1)见解析;(2)①.

【解析】

1)连接OC,利用等腰三角形三线合一的性质证得OCBF,再根据CGFB即可证得结论;

2)①根据已知条件易证得是等边三角形,利用三角函数可求得的长,根据三角形重心的性质即可求得答案;

②易证得,利用扇形的面积公式即可求得答案.

1)连接.

的中点,

.

.

.

的切线.

2)①

.

.

是等边三角形.

的半径为

中,,

BFOCCDOBBFCD相交于E,点E是等边三角形OBC的垂心,也是重心和内心,

.

AFBC

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.

请根据统计图表中的信息,解答下列问题:

1)求被抽查的学生人数和m的值;

2)求本次抽查的学生文章阅读篇数的中位数和众数;

3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台.

(1)求甲、乙两种品牌空调的进货价;

(2)该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋里有四个完全相同的小球,把它们分别标号为.随机摸取一个小球然后放回,再随机摸取一个.

请用画树状图和列表的方法,求下列事件的概率:

(1)两次取出的小球标号相同;

(2)两次取出的小球标号的和等于4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.

1)如图1,在对半四边形中,,求的度数之和;

2)如图2为锐角的外心,过点的直线交于点,求证:四边形是对半四边形;

3)如图3,在中,分别是上一点,的中点,,当为对半四边形的对半线时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,yx的几组对应值如下表所示:

x(s)

0

0.5

1

1.5

2

y(m)

0

8.75

15

18.75

20

()y关于x的函数解析式(不要求写x的取值范围)

()问:小球的飞行高度能否达到22m?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于的一元二次方程有两个不相等且非零的实数根,探究满足的条件.

小华根据学习函数的经验,认为可以从二次函数的角度研究一元二次方程的根的符号。下面是小华的探究过程:第一步:设一元二次方程对应的二次函数为

第二步:借助二次函数图象,可以得到相应的一元二次方程中满足的条件,列表如下表。

方程两根的情况

对应的二次函数的大致图象

满足的条件

方程有两个不相等的负实根

_______

方程有两个不相等的正实根

____________

1)请将表格中①②③补充完整;

2)已知关于的方程,若方程的两根都是正数,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在AB位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C (C与点AB在同一平面内),A处测得其仰角为B处测得其仰角为.(参考数据:

1)求该时刻无人机的离地高度;(单位:米,结果保留整数)

2)无人机沿水平方向向左飞行2秒后到达点F(点F与点ABC在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB分别在反比例函数y= (k10) y= (k20)的图象上,连接ABy轴于点P,且点A与点B关于P成中心对称.若△AOB的面积为4,则k1-k2=______.

查看答案和解析>>

同步练习册答案