精英家教网 > 初中数学 > 题目详情

【题目】定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.

1)如图1,在对半四边形中,,求的度数之和;

2)如图2为锐角的外心,过点的直线交于点,求证:四边形是对半四边形;

3)如图3,在中,分别是上一点,的中点,,当为对半四边形的对半线时,求的长.

【答案】1;(2)详见解析;(35.25.

【解析】

1)根据四边形内角和与对半四边形的定义即可求解;

2)根据三角形外心的性质得,得到,从而求出=60°,再得到,根据对半四边形的定义即可证明;

3)先根据为对半四边形的对半线得到,故可证明为等边三角形,再根据一线三等角得到,故,列出比例式即可求出AD,故可求解AC的长.

1)∵四边形内角和为

=

2)连结,由三角形外心的性质可得

所以

所以

在四边形中,,则另两个内角之和为

所以四边形为对半四边形;

3)若为对半线,则

所以为等边三角形

FDE中点,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1ABCD是圆O的两条弦,交点为P.连接ADBC. OM ADONBC,垂足分别为MN.连接PMPN.

1 2

1)求证:ADP ∽△CBP

2)当ABCD时,探究PMOPNO的数量关系,并说明理由;

3)当ABCD时,如图2AD=8,BC=6, MON=120°,求四边形PMON的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A10),已知抛物线y=﹣x2+mx2mm是常数),顶点为P

1)当抛物线经过点A时,求顶点P坐标;

2)等腰RtAOB,点B在第四象限,且OAOB.当抛物线与线段OB有且仅有两个公共点时,求m满足的条件;

3)无论m取何值,该抛物线都经过定点H.当∠AHP45°,求此抛物线解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我省某工厂为全运会设计了一款成本每件20元的工艺品,投放市场试销后发现销售量y(件)是售价x(/)的一次函数,当售价为23/件时,每天销售量为790件;当售价为25/件,每天销售量为750.

1)求yx的函数关系;

2)如果该工艺品最高不超过每件30元,那么售价定位每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面内,将两个全等的等腰直角三角形摆放在一起,为公共顶点,,若固定不动,绕点旋转,与边的交点分别为(点不与点重合,点不与点重合).

(1)求证:

(2)在旋转过程中,试判断等式是否始终成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的半径为的直径,上一点,连接.为劣弧的中点,过点,垂足为于点,交的延长线于点.

1)求证:的切线;

2)连接,若,如图2.

①求的长;

②图中阴影部分的面积等于_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C将线段AB分成两部分,若AC2BCAB(ACBC),则称点C为线段AB的黄金分割点.某数学兴趣小组在进行抛物线课题研究时,由黄金分割点联想到黄金抛物线,类似地给出黄金抛物线的定义:若抛物线yax2+bx+c,满足b2ac(b≠0),则称此抛物线为黄金抛物线.

()若某黄金抛物线的对称轴是直线x2,且与y轴交于点(08),求y的最小值;

()若黄金抛物线yax2+bx+c(a0)的顶点P(13),把它向下平移后与x轴交于A(+30)B(x00),判断原点是否是线段AB的黄金分割点,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线的部分图象,其顶点为,与轴交于点,与轴的一个交点为,连接.以下结论:①;②抛物线经过点;③;④当时, .其中正确的是(

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,且AE=BF=CG=DH.

(1)求证:四边形EFGH是矩形;

(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.

查看答案和解析>>

同步练习册答案