【题目】下列命题为真命题的是
A.有两边及一角对应相等的两个三角形全等
B.方程x2+2x+3=0有两个不相等的实数根
C.面积之比为1∶2的两个相似三角形的周长之比是1∶4
D.顺次连接任意四边形各边中点得到的四边形是平行四边形
【答案】D
【解析】解:有两边及其夹角对应相等的两个三角形全等,选项A中的一角不一定是对应相等两边的夹角,故选项A错误;
∵x2+2x+3=0,∴△=22-4×1×3=4-12=-8<0,∴方程x2+2x+3=0没有实数根,故选项B错误;
面积之比为1∶2的两个相似三角形的周长之比是1:,故选项C错误;
顺次连接任意四边形各边中点得到的四边形,这个四边形的对边都等于原来四边形与这组对边相对的对角线的一半,并且和这条对角线平行,故得到的中点四边形是平行四边形,故选项D正确;
故选D.
【考点精析】认真审题,首先需要了解求根公式(根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根),还要掌握平行四边形的判定(两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】如图,射线OP过Rt△ABC的边AC、AB的中点M、N,AC=4cm,BC=4 cm,OM=3cm.射线OP上有一动点Q从点O出发,沿射线OP以每秒1cm的速度向右移动,以Q为圆心,QM为半径的圆,经过t秒与BC、AB中的一边所在的直线相切,请写出t的所有可能值(单位:秒)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别交于A、B两点,半径为5的圆⊙O与x轴正半轴相交于点C,与y轴相交于D、E两点.
(1)若直线AB交劣弧 于P、Q两点(异于C、D)
①当P点坐标为(3,4)时,求b值;
②求∠CPE的度数,并用含b的代数式表示弦PQ的长(写出b的取值范围);
(2)当b=6时,线段AB上存在几个点F,使∠CFE=45°?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(0,4),B(2,0).
(1)求直线AB的函数解析式;
(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.
①求线段AC的长;(用含m的式子表示)
②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算下列各题
(1)
(2)(2x)2x4÷x
(3)
(4)
(5)(x﹣2)(2+x)﹣(2﹣x)(x﹣2)
(6)(6x4y2+8x3y4)÷2xy2﹣(﹣2xy)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】西瓜和甜瓜是新疆特色水果,小明的妈妈先购买了2千克西瓜和3千克甜瓜,共花费9元;后又购买了1千克西瓜和2千克甜瓜,共花费5.5元.(每次两种水果的售价都不变)
(1)求两种水果的售价分别是每千克多少元?
(2)如果还需购买两种水果共12千克,要求甜瓜的数量不少于西瓜数量的两倍,请设计一种购买方案,使所需总费用最低.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y= (a>0,a为常数)和y= 在第一象限内的图象如图所示,点M在y= 的图象上,MC⊥x轴于点C,交y= 的图象于点A;MD⊥y轴于点D,交y= 的图象于点B,当点M在y= 的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com