精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别交于A、B两点,半径为5的圆⊙O与x轴正半轴相交于点C,与y轴相交于D、E两点.

(1)若直线AB交劣弧 于P、Q两点(异于C、D)
①当P点坐标为(3,4)时,求b值;
②求∠CPE的度数,并用含b的代数式表示弦PQ的长(写出b的取值范围);
(2)当b=6时,线段AB上存在几个点F,使∠CFE=45°?请说明理由.

【答案】
(1)

解:①∵点P(3,4)在直线AB上,

∴﹣3+b=4,

∴b=7,②∵∠COE=90°,

∴∠CPE= ∠COE=45°,

如图1,过点O作OM⊥AB于M,连接OP,

∵直线AB的解析式为y=﹣x+b①,

∴直线OM的解析式为y=x②,

联立①②解得点M( b, b),

∴OM2= b2

在Rt△POM中,OP=5,根据勾股定理得,PM= =

∴PQ=2PM=

当点P和点D重合时,b=5

当OM=5时,b=﹣5 (舍)或b=5

∴5≤b<5

即:PQ= (5≤b<5


(2)

解:当b=6时,线段AB上存在2个点F,使∠CFE=45°,

理由:由(1)②知,点F在劣弧 上时,∠CFE=45°,

由(1)②知,OM=5时,即:b=5 时,直线AB与⊙O相切,

当点B与点D重合时,b=5,

∴当b=6时,在5到5 之间,

∴线段AB与⊙Q有两个交点,

即:当b=6时,线段AB上存在2个点F,使∠CFE=45°.


【解析】(1)①直接将点P的坐标代入直线y=﹣x+b中,即可求出b的值,②先求出直线OM的解析式,即可得出点M的坐标,进而得出OM,再用勾股定理即可得出PM,即可得出PQ;(2)先判断出点F是劣弧 上时,∠CFE=45°,进而判断b=6是线段AB与⊙O的交点的个数即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题: ①所调查的七年级50名学生在这个月内做好事次数的平均数是 , 众数是 , 极差是
②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.
【答案】解:①平均数;(2×5+3×6+4×13+5×16+6×10)÷50=4.4;
众数:5次;
极差:6﹣2=4;
②做好事不少于4次的人数:800× =624;
(1)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球. ①用“树状图法”或“列表法”表示所有可能出现的结果;
②取出的两个小球上所写数字之和是偶数的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为三角形数,而把1,4,9,16…这样的数称为正方形数.从图中可以发现,任何一个大于1正方形数都可以看作两个相邻三角形数之和.下列等式中,符合这一规律的是(  )

A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+5x+3﹣3m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为负整数,求此时方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD,AC平分∠BAD,BC=CD=10,AB=21,AD=9.AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,RtABC中,∠ACB=90°,DAB中点,DEDF分别交ACE,交BCF,且DEDF

(1)如果CA=CB,求证:AE2+BF2=EF2

(2)如图2,如果CACB,(1)中结论还能成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题为真命题的是
A.有两边及一角对应相等的两个三角形全等
B.方程x2+2x+3=0有两个不相等的实数根
C.面积之比为1∶2的两个相似三角形的周长之比是1∶4
D.顺次连接任意四边形各边中点得到的四边形是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB90°A22.5°,斜边AB的垂直平分线交AC于点D,点FAC上,点EBC的延长线上,CECF,连接BFDE.线段DEBF在数量和位置上有什么关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上(不与A、O重合)的一个动点,过点P作PE⊥PB且交边CD于点E.
(1)求证:PB=PE;
(2)过点E作EF⊥AC于点F,如图2,若正方形ABCD的边长为2,则在点P运动的过程中,PF的长度是否发生变化?若不变,请直接写出这个不变的值;若变化,请说明理由.

查看答案和解析>>

同步练习册答案