精英家教网 > 初中数学 > 题目详情
9.解不等式组:$\left\{\begin{array}{l}{\frac{x+1}{2}≥1}\\{7x-8<5x}\end{array}\right.$.

分析 分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.

解答 解:解不等式$\frac{x+1}{2}≥1$,得:x≥1,
解不等式7x-8<5x,得:x<4,
故不等式组解集为:1≤x<4.

点评 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.将下列不等式化成“x>a”或“x<a”的形式:
(1)x-17<-5;               
(2)$-\frac{1}{2}x$>-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:$-{({-1})^{2016}}-{({\frac{1}{2}})^{-3}}+{({cos{{86}°}+\frac{5}{π}})^0}+|{3\sqrt{3}-8sin{{60}°}}|$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.2015年末青岛市常住人口数约为9050000人,将9050000用科学记数法表示为(  )
A.9.05×106B.0.905×106C.0.905×107D.9.05×107

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,AB是⊙O的直径,∠ABC=70°,则∠D的度数为20°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.
(1)求证:△BFH≌△DEG;
(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.先找规律,再填数.$\frac{1}{1}+\frac{1}{2}$-1=$\frac{1}{2}$,$\frac{1}{3}+\frac{1}{4}-\frac{1}{2}$=$\frac{1}{12}$,$\frac{1}{5}+\frac{1}{6}-\frac{1}{3}=\frac{1}{30}$,$\frac{1}{7}+\frac{1}{8}-\frac{1}{4}=\frac{1}{56}$…,则$\frac{1}{2015}+\frac{1}{2016}-$$\frac{1}{1008}$=$\frac{1}{2015×2016}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.
(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?
(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列运算正确的是(  )
A.a2+a2=2a2B.a6•a4=a24C.a4+b4=(a+b)4D.(x33=x6

查看答案和解析>>

同步练习册答案