精英家教网 > 初中数学 > 题目详情

【题目】如图,方格纸中每个小正方形的边长均为1,建立如图所示的直角坐标系,已知两点A02),B41

1)请在x轴上画出一点P,使得PA+PB的值最小;

2)请直接写出:点P的坐标  PA+PB的最小值为  

【答案】1)详见解析;(2P点坐标为(0),PA+PB的最小值为5

【解析】

1)作A点关于x轴的对称点A′,连结BA′x轴于P点,利用对称的性质得到PAPA′,则PA+PBPA′+PBBA′,于是利用两点之间线段最短可判断P点满足条件;

2)先写出点A′的坐标为(0,﹣2),再利用待定系数法求出直线BA′的解析式为yx2,然后解方程x20P点坐标,然后利用两点间的距离公式求出BA′即可.

解:(1)如图,点P为所作;

2A点关于x轴对称的点A′的坐标为(0,﹣2),

设直线BA′的解析式为ykx+b

A′(0,﹣2),B41)得,解得,

∴直线BA′的解析式为yx2

y0时,x20,解得x

P点坐标为(0),

PA+PB的最小值=

故答案为:(0),5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(背景介绍)勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.

(小试牛刀)把两个全等的直角三角形如图1放置,其三边长分别为abc.显然,∠DAB=B=90°ACDE.请用abc分别表示出梯形ABCD、四边形AECDEBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:

S梯形ABCD=

SEBC=

S四边形AECD=

则它们满足的关系式为 ,经化简,可得到勾股定理.

(知识运用)(1)如图2,铁路上AB两点(看作直线上的两点)相距40千米,CD为两个村庄(看作两个点),ADABBCAB,垂足分别为ABAD=25千米,BC=16千米,则两个村庄的距离为 千米(直接填空);

2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图2中作出P点的位置并求出AP的距离.

(知识迁移)借助上面的思考过程与几何模型,求代数式最小值(0x16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1+∠2=180°,∠DAE=∠BCFDA平分∠BDF.

(1)AEFC会平行吗?说明理由.

(2)ADBC的位置关系如何?为什么?

(3)求证:BC平分∠DBE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为(10)(30),现同时将点AB分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点AB的对应点CD.连接ACBD.

(1)写出点CD的坐标及四边形ABDC的面积.

(2)y轴上是否存在一点P,连接PAPB,使S三角形PABS四边形ABDC?若存在,求出点P的坐标,若不存在,试说明理由;

(3)Q是线段BD上的动点,连接QCQO,当点QBD上移动时(不与BD重合),给出下列结论:①的值不变;②的值不变,其中有且只有一个正确,请你找出这个结论并求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有个填写运算符号的游戏:在“”中的每个“口”内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.

(1)计算:

(2)若请推算“口”内的运算符号.

(3)在“”的“口”内填入运算符号后,使计算所得的数最小,直接写出这个最小的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,铁路MN和公路PQ在点O处交汇,QON=30°,公路PQA处距O240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,求A处受噪音影响的时间。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,一个点从数轴上的原点开始.先向左移动6cm到达A点,再从A点向右移动10cm到达B点,点C是线段AB的中点.

1)点C表示的数是   

2)若点A以每秒2cm的速度向左移动,同时CB两点分别以每秒1cm4cm的速度向右移动,设移动时间为t秒,

运动t秒时,点C表示的数是   (用含有t的代数式表示);

t2秒时,CBAC的值为   

试探索:点ABC在运动的过程中,线段CBAC总有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,AB=2,A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【 】

 A.1 B. C. 2 D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明站在池塘边的点处,池塘的对面(小明的正北方向)处有一棵小树,他想知道这棵树距离他有多远,于是他向正东方向走了12步到达电线杆旁,接着再往前走了12步,到达处,然后他改向正南方向继续行走,当小明看到电线杆、小树与自己现处的位置在一条直线上时,他共走了60.

1)根据题意,画出示意图(写出作图步骤);

2)如果小明一步大约40 ,估算出小明在点处时小树与他的距离为多少米,并说明理由.

查看答案和解析>>

同步练习册答案