【题目】如图,是抛物线形拱桥,当拱顶离水面2米时,水面宽4米.若水面下降1米,则水面宽度将增加多少米?
【答案】(2﹣4)米
【解析】试题分析:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,抛物线以y轴为对称轴,由题意得OC=2即抛物线顶点C坐标为(0,2),所以将抛物线解析式设为顶点式y=ax2+2,其中a可通过代入A点坐标(-2,0)到抛物线解析式得出,当水面下降1米,通过抛物线在图上的观察可转化为:当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,将y=-1代入抛物线解析式即可求出,最后求出增加的宽度即可.
试题解析:
建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,
∵OC=2,
∴顶点C坐标为(0,2),
∴设抛物线解析式为y=ax2+2,
将 A点坐标(-2,0)代入解析式,得:a=-0.5,
∴抛物线解析式为:y=-0.5x2+2,
令y=-1,-1=-0.5x2+2,
解得:x=±,
∴水面宽度增加到2米,
比原先的宽度当然是增加了(2-4)米.
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A恰好落在BC 上的点D处,点CE=I,AC=4,则下列结论一定正确的个数是( )
①∠CDE= ∠DFB ;②BD > CE ;③BC= CD ;④△DCE 与△BDF 的周长相等.
A. 1个 B. 2个 C. 3个 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形 ABCD 的边长为 10,E 在 BC 边上运动,取 DE 的中点 G,EG 绕点 E 顺时针旋转90°得 EF,问 CE 长为多少时,A、C、F 三点在一条直线上( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4cm,点E为AC边上一点,且AE=3cm,动点P从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为x s.作∠EPF=90°,与边BC相交于点F.设BF长为ycm.
(1)当x= s时,EP=PF;
(2)求在点P运动过程中,y与x之间的函数关系式;
(3)点F运动路程的长是 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.
(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;
(2)求使﹣2的值为整数的实数k的整数值;
(3)若k=﹣2,λ=,试求λ的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AC=8cm,BC=6cm,P点在BC上,从B点到C点运动(不包括 C点),点 P运动的速度为1cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为2cm/s,若点 P、Q 分别从B、C 同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.
(1)当 t 为何值时,P、Q 两点的距离为 4cm?
(2)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com