精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线C1:y=﹣x2+4x﹣3,把抛物线C1先向右平移3个单位长度,再向上平移3个单位长度,得到抛物线C2将抛物线C1和抛物线C2这两个图象在x轴及其上方的部分记作图象M.若直线y=kx+ 与图象M至少有2个不同的交点,则k的取值范围是________

【答案】0≤k<

【解析】

首先配方得出二次函数顶点式,求得抛物线C1的顶点坐标,进而利用二次函数平移规律得出抛物线C2,求得顶点坐标,把两点顶点坐标代入即可求得.

y=﹣x2+4x﹣3=+1,

抛物线C1的顶点(2,1)

则将抛物线y=﹣x2+4x﹣3先向右平移3个单位长度,再向上平移3个单位长度,

得到的新的抛物线C2的解析式为:y=+4.

抛物线C2顶点(5,4),

(2,1)代入y=kx+ (k0),1=2k+

解得k=

(5,4)代入y=kx+ (k0),4=5k+

解得k=

直线y=kx+ (k0)与图象M至少有2个不同的交点,k的取值范围是0k<.

故答案为:0k<.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知直线y=x+3x轴交于点A,与y轴交于点B抛物线y=﹣x2+bx+c经过AB两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D

1)求抛物线的解析式;

2)在第三象限内,F为抛物线上一点,以AEF为顶点的三角形面积为3,求点F的坐标;

3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以PBC为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(感知)如图,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),∠A=∠B=∠DPC=90°.易证:△DAP∽△PBC(不要求证明).

(探究)如图,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),∠A=∠B=∠DPC.

(1)求证:△DAP~△PBC.

(2)PD=5,PC=10,BC=9,求AP的长.

(应用)如图,在△ABC中,AC=BC=4,AB=6,点P在边AB上(点P不与点A、B重合),连结CP,作∠CPE=∠A,PE与边BC交于点E.当CE=3EB时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一副三角板如图甲放置,其中∠ACB=DEC=90°A=45°D=30°,斜边AB=6DC=7,把三角板DCE绕点C顺时针旋转15°得到D1CE1(如图乙),此时ABCD1交于点O,则线段AD1的长为(  )

A. B. 5 C. 4 D.

【答案】B

【解析】由旋转的性质可知,在图乙中,∠BCE1=15°,∠D1CE1=60°,AB=6,CD1=CD=7,

∴∠D1CB=60°-15°=45°,

∵∠ACB=90°

∴CO平分∠ACB

又∵AC=BC

COABCO=AO=BO=AB=3

∴D1O=CD1-CO=7-3=4∠AOD1=90°

RtAOD1中,AD1=.

故选B.

点睛本题解题的关键是由旋转的性质证明∠D1CB=45°,从而得到CD1平分∠ACB,结合等腰三角形的“三线合一”证得∠AOD1=90°,并求得AO=3,OD1=4;这样问题就变得很简单了.

型】单选题
束】
10

【题目】我市某小区实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中,正确的个数有( )个.

甲队每天挖100米;

乙队开挖两天后,每天挖50米;

x=4时,甲、乙两队所挖管道长度相同;

甲队比乙队提前2天完成任务.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,点E是BC的中点,F是AB延长线上一点且FB=1.

(1)求经过点O,A,E三点的抛物线解析式;

(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;

(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分10分)已知二次函数

(1)当时,函数值的增大而减小,求的取值范围。

(2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形两点在抛物线上),请问:的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由。

(3)若抛物线轴交点的横坐标均为整数,求整数的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,ADBC边上的中线.

(1)画出与△ACD关于点D成中心对称的三角形;

(2)找出与AC相等的线段;

(3)探究:△ABCABAC的和与中线AD之间有何大小关系?并说明理由;

(4)AB=5,AC=3,求线段AD的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE是圆O的直径,点BAE的延长线上,点D在圆O上,且AC⊥DCAD平分∠EAC

(1)求证:BC是圆O的切线。

(2)BE=8,BD=12,求圆O的半径,

查看答案和解析>>

同步练习册答案