【题目】某工程由甲乙两队合做天完成,厂家需付甲乙两队共元;乙丙两队合做天完成,厂家需付乙丙两队共元;甲丙两队合做天完成全部工程的,厂家需付甲丙两队共元.
(1)求甲、乙、丙各队单独完成全部工程各需多少天?
(2)若要求不超过天完成全啊工程,问可由哪队单独完成此项工程花钱最少?
【答案】(1),,;(2)甲单独完成此项工程花钱最少
【解析】本题主要考查了分式方程的应用. (1)设甲队单独做x天完成,乙队单独做y天完成,丙队单独做z天完成,则甲、乙、丙的工作效率分别为 ,根据合做的效率= ,列分式方程组求解;
(2)设甲队做一天应付给a元,乙队做一天应付给b元,丙队做一天应付给c元,用每天应付费用×完成任务天数=共付费用,列方程组求a、b、c,再根据工期的规定及花费最少答题.
解:(1)设甲队单独做x天完成,乙队单独做y天完成,丙队单独做z天完成,则 ;解方程组,得x=10,y=15,z=30;
(2)设甲队做一天应付给a元,乙队做一天应付给b元,丙队做一天应付给c元,
则有:6(a+b)=8700,10(b+c)=9500,5(a+c)=5500
解方程组,得:a=800,b=650,c=300
∵10a=8000(元),15b=9750(元),
∴由甲队单独完成此工程花钱最少.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.
(1)如果AB=AC,求证:△DEF是等边三角形;
(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如果△DEF是等边三角形,请加以证明;如果△DEF不是等边三角形,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,AD∥BC,AP平分∠DAB,BP平分∠ABC,它们的交点P在线段CD上,下面的结论:①AP⊥BP;②点P到直线AD,BC的距离相等;③PD=PC.其中正确的结论有( )
A. ①②③ B. ①② C. ① D. ②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
序号 项目 | 1 | 2 | 3 | 4 | 5 | 6 |
笔试成绩/分 | 85 | 92 | 84 | 90 | 84 | 80 |
面试成绩/分 | 90 | 88 | 86 | 90 | 80 | 85 |
根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).
(1)这6名选手笔试成绩的中位数是________分,众数是________分;
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.
(1)求该反比例函数和一次函数的解析式;
(2)连接MC,求四边形MBOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.
(1)若∠COM=∠AOC,求∠AOD的度数;
(2)若∠COM=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A的速度为3米/秒,B的速度为2米/秒
(1)已知MN=100米,若B先从点M出发,当MB=5米时A从点M出发,A出发后经过 秒与B第一次重合;
(2)已知MN=100米,若A、B同时从点M出发,经过 秒A与B第一次重合;
(3)如图2,若A、B同时从点M出发,A与B第一次重合于点E,第二次重合于点F,且EF=20米,设MN=s米,列方程求s.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.
(1)填空:∠OBC+∠ODC= ;
(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:
(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次数学课上,小明同学给小刚同学出了一道数形结合的综合题,他是这样出的:如图,数轴上两个动点 M,N 开始时所表示的数分别为﹣10,5,M,N 两点各自以一定的速度在数轴上运动,且 M 点的运动速度为2个单位长度/s.
(1)M,N 两点同时出发相向而行,在原点处相遇,求 N 点的运动速度.
(2)M,N 两点按上面的各自速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?
(3)M,N 两点按上面的各自速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发沿同方向运动,且在运动过程中,始终有 CN:CM=1:2.若干秒后,C 点在﹣12 处,求此时 N 点在数轴上的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com