精英家教网 > 初中数学 > 题目详情
14.将抛物线y=x2-2向上平移一个单位后,得一新的抛物线,那么新的抛物线的表达式是y=x2-1.

分析 先利用顶点式得到抛物线y=x2-2的顶点坐标为(0,-2),再利用点平移的规律得到点(0,-2)平移所得对应点的坐标为(0,-1),然后根据顶点式写出平移后的抛物线解析式.

解答 解:y=x2-2的顶点坐标为(0,-2),把点(0,-2)向上平移一个单位后所得对应点的坐标为(0,-1),所以新的抛物线的表达式是y=x2-1.
故答案为y=x2-1.

点评 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.提出问题:当x>0时如何求函数y=x+$\frac{1}{x}$的最大值或最小值?
分析问题:前面我们刚刚学过二次函数的相关知识,知道求二次函数的最值时,我们可以利用它的图象进行猜想最值,或利用配方可以求出它的最值.
例如我们求函数y=x-2$\sqrt{x}$(x>0)的最值时,就可以仿照二次函数利用配方求最值的方法解决问题;y=x-2$\sqrt{x}$=($\sqrt{x}$)2-2$\sqrt{x}$-2$\sqrt{x}$+1-1=($\sqrt{x}$-1)2-1即当x=1时,y有最小值为-1
解决问题
借鉴我们已有的研究函数的经验,探索函数y=x+$\frac{1}{x}$(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=x+$\frac{1}{x}$(x>0)的图象:
x$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{2}$1234
y
(2)观察猜想:观察该函数的图象,猜想
当x=1时,函数y=x+$\frac{1}{x}$(x>0)有最小值(填“大”或“小”),是2.
(3)推理论证:利用上述例题,请你尝试通过配方法求函数y=x+$\frac{1}{x}$(x>0)的最大(小)值,以证明你的猜想.知识能力运用:直接写出函数y=-2x-$\frac{1}{2x}$(x>0)当x=$\frac{1}{2}$时,该函数有最大值(填“大”或“小”),是-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,已知点A、B、C的坐标分别A(1,6)、B(1,0)、C(5,0).若点P在∠ABC的平分线上,且PA=PC,则点P的坐标为(6,5).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.下列四个立体图形中,左视图为矩形的是④.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.今年我区吉安镇柑桔喜获丰收,根据柑桔季节性及以往销售经验,销售时间不超过12周,每千克售价y(元)与销售时间x(周)之间的关系如下表:
销售时间x(周)123456
每千克售价y(元)302826242220
(1)请你从所学过的一次函数和二次函数中确定哪种函数关系能表达y与x的变化规律(不需说明理由),并写出y关于x的函数关系式.
(2)根据销售经验,第1周每千克售价30元时,当周可以销售1200千克水果;以后售价每降低2元,当周销售量可以增加400千克,通过计算估计最多第几周的销售金额就可以达到60800元.
(3)设第9周的销售量仍满足(2)中的关系,根据销售经验,从第9周后,每周的销售量均比前一周下降900千克,而售价与时间仍满足(1)中的关系,柑桔通过前9周的销售后,只剩5000千克.现准备将这批柑桔全部批发给某水果商,那么每千克的批发价至少为多少元时,才能获得不低于依销售经验按周销售的金额?
(参考数据:$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73,$\sqrt{5}$≈2.24,$\sqrt{6}$≈2.45,$\sqrt{7}$≈2.65)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图是用棋子摆成的“T”字图案.
从图案中可以看出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”字图案需要11枚棋子.照此规律,摆成第2015个图案需要棋子6047枚.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.观察下列关于自然数的等式:
32-4×2=12
42-4×3=22
52-4×4=32

根据上述规律解决下列问题
(1)完成第⑩个等式:122-4×11=102
(2)写出你猜想的第n个等式(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在Rt△ABC中,∠C=90°,tanB=$\frac{3}{4}$,∠ADC=45°,DC=6,求sin∠BAD.

查看答案和解析>>

同步练习册答案