【题目】如图,四边形ABCD是平行四边形,下列说法不正确的是( )
A.当AC=BD时,四边形ABCD是矩形
B.当AB=BC时,四边形ABCD是菱形
C.当AC⊥BD时,四边形ABCD是菱形
D.当∠DAB=90°时,四边形ABCD是正方形
【答案】D
【解析】解:A、∵四边形ABCD是平行四边形,AC=BD,
∴四边形ABCD是矩形,正确,故本选项错误;
B、∵四边形ABCD是平行四边形,AB=BC,
∴四边形ABCD是菱形,正确,故本选项错误;
C、四边形ABCD是平行四边形,AC⊥BD,
∴四边形ABCD是菱形,正确,故本选项错误;
D、四边形ABCD是平行四边形,∠DAB=90°,
∴四边形ABCD是矩形,错误,故本选项正确;
故选D.
【考点精析】掌握菱形的判定方法和矩形的判定方法是解答本题的根本,需要知道任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形.
科目:初中数学 来源: 题型:
【题目】如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为( )
A. 300m B. 400m C. 500m D. 700m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线C:y=x2+bx+c 交 轴于点A(0,-1)且过点 , P是抛物线C上一个动点,过P作PB∥OA,以P为圆心,2为半径的圆交PB于C、D两点(点D位于点C下方).
(1)求抛物线C的解析式;
(2)连接AP交⊙P于点E,连接DE,AC.若ΔACP是以CP为直角边的直角三角形,求∠EDC的度数;
(3)若当点P经过抛物线C上所有的点后,点D随之经过的路线被直线 截得的线段长为8,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究:小刚根据学习函数的经验,对函数y=﹣2|x|+5的图象和性质进行了探究.下面是小刚的探究过程,请你解决相关问题:
(Ⅰ)在函数y=﹣2|x|+5中,自变量x可以是任意实数;
(Ⅱ)如表y与x的几组对应值:
X | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | ﹣1 | 1 | 3 | 5 | 3 | 1 | ﹣1 | ﹣3 | … |
(Ⅲ)如图,在平面直角坐标系中,描出以表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:
(1)若A(m,﹣11),B(8,﹣11)为该函数图象上不同的两点,则m= ;
(2)观察函数y=﹣2|x|+5的图象,写出该图象的一条性质 .
(3)直线y=kx+b(k≠0)经过点(﹣1,3)及点(4,﹣3),则当kx+b<﹣2|x|+5时,自变量x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着“西成高铁”的开通,对于加强关中一天水经济区与成渝经济区的交流合作,促进区域经济发展和提高人民出行质量,具有十分重要的意义.成都某单位组织优秀员工利用周末乘坐“西成高铁”到西安观光旅游,计划游览着名景点“大唐芙蓉园”.已知该景区团体票价格设置如下:
人数/人 | 10人以内(含10人) | 超过10人但不超过30人的部分 | 超过30人的部分 |
单价(元/张) | 120 | 100 | 90 |
(1)求团体票总费用y(元)与游览人数x(人)之间的关系式;
(2)若该单位购买团体票共花费4100元,且所有人都购买了门票,那么该单位共有多少人游览了“大唐芙蓉园”?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com