精英家教网 > 初中数学 > 题目详情

【题目】AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点DCACD

1)连接BC,求证:BCOB

2E中点,连接CEBE,若BE2,求CE的长.

【答案】(1)见解析;(2)1+

【解析】

1)连接OC,根据圆周角定理、切线的性质得到∠ACO=DCB,根据CA=CD得到∠CAD=D,证明∠COB=CBO,根据等角对等边证明;
2)连接AE,过点BBFCE于点F,根据勾股定理计算即可.

1)证明:连接OC

AB为⊙O直径,

∴∠ACB90°

CD为⊙O切线

∴∠OCD90°

∴∠ACO=∠DCB90°﹣∠OCB

CACD

∴∠CAD=∠D

∴∠COB=∠CBO

OCBC

OBBC

2)连接AE,过点BBFCE于点F

EAB中点,

AEBE2

AB为⊙O直径,

∴∠AEB90°

∴∠ECB=∠BAE45°

CFBF1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,将一个矩形纸片放置在平面直角坐标系中,点的坐标是,点的坐标是,点的坐标是.点的中点,在上取一点,将沿翻折,使点落在边上的点处.

(Ⅰ)求点的坐标;

(Ⅱ)如图②,若点是线段上的一个动点(点不与点重合),过点,设的长为的面积为,试用关于的代数式表示

(Ⅲ)在轴、轴上分别存在点,使得四边形的周长最小,请直接写出四边形的周长最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.

1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°

2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点DOB的中点,点E是线段AB上的动点,连结DE,作DFDE,交OA于点F,连结EF.已知点EA点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.

(1)如图1,当t=3时,求DF的长.

(2)如图2,当点E在线段AB上移动的过程中,DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.

(3)连结AD,当ADDEF分成的两部分的面积之比为1:2时,求相应的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了更好的落实阳光体育运动,学校需要购买一批足球和篮球,已知一个足球比一个篮球的进价高30元,买一个足球和两个篮球一共需要300元.

(1)求足球和篮球的单价;

(2)学校决定购买足球和篮球共100个,为了加大校园足球活动开展力度,现要求购买的足球不少于60个,且用于购买这批足球和篮球的资金最多为11000元.试设计一个方案,使得用来购买的资金最少,并求出最小资金数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解九年级学生的体育达标情况,随机抽取名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:

测试成绩(分)

人数(人)

1)该校九年级有名学生,估计体育测试成绩为分的学生人数;

2)该校体育老师要对本次抽测成绩为分的甲、乙、丙、丁名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°

1)求城门大楼的高度;

2)每逢重大节日,城门大楼管理处都要在AB之间拉上绳子,并在绳子上挂一些彩旗,请你求出AB之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈cos22°≈tan22°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品厂生产一种半成品食材,成本为2/千克,每天的产量(百千克)与销售价格(元/千克)满足函数关系式,从市场反馈的信息发现,该半成品食材每天的市场需求量(百千克)与销售价格(元/千克)满足一次函数关系,部分数据如表:

销售价格(元/千克)

2

4

……

10

市场需求量(百千克)

12

10

……

4

已知按物价部门规定销售价格不低于2/千克且不高于10/千克.

1)直接写出的函数关系式,并注明自变量的取值范围;

2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.

①当每天的半成品食材能全部售出时,求的取值范围;

②求厂家每天获得的利润y(百元)与销售价格的函数关系式;

3)在(2)的条件下,当______/千克时,利润有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则应定为______/千克.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有辆货车未出租,日租金总收入为元;旺季所有的货车每天能全部租出,日租金总收入为元.

1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?

2)经市场调查发现,在旺季如果每辆货车的日租金每上涨元,每天租出去的货车就会减少辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?

查看答案和解析>>

同步练习册答案