【题目】如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,点B恰好落在对角线AC上的点B′处,P,Q分别是AB,AC上的动点,则PE+PQ的最小值为( )
A.B.2C.1D.3
【答案】B
【解析】
根据BC=3BE利用折叠和三角函数求出∠ACB=30°,得到AB=,BC=AB=3,∠BAC=60°,作点E关于AB的对称点E',连接AE',PE',当Q,P,E'三点共线,且E'Q⊥AC时,PE+PQ的值最小,最小值为AE'的值,根据求出答案.
∵BC=3BE,
∴EC=2BE,
∵折叠,
∴BE=B'E,∠ABC=∠AB'E=90°,,
∵sin∠ACB=,
∴∠ACB=30°,
在Rt△ABC中,AC=2,∠ACB=30°,
∴AB=,BC=AB=3,∠BAC=60°,
∴∠BAE=∠EAC=30°,
如图
作点E关于AB的对称点E',连接AE',PE',
∵PE+PQ=PE'+PQ,
∴当Q,P,E'三点共线,且E'Q⊥AC时,
PE+PQ的值最小,
∵BC=3,BC=3BE,
∴BE=1,
∵E',E两点关于AB对称,
∴BE'=BE=1,∠EAB=∠E'AB=30°,且∠BAC=60°,
∴∠E'AC=90°,
即PE+PQ的最小值为AE'的值,
∵∠BAE'=30°,BE'=1,AB⊥CB,
∴AE'=2,
∴PE+PQ的最小值为2.
故选:B.
科目:初中数学 来源: 题型:
【题目】某食品零售店为食品厂代销一种面包,未售出的面包可以退回厂家.经统计销售情况发现,当这种面包的销售单价为7角时,每天卖出160个.在此基础上.单价每提高1角时,该零售店每天就会少卖出20个面包.设这种面包的销售单价为x角(每个面包的成本是5角).零售店每天销售这种面包的利润为y角.
(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;
(2)求x与y之间的函数关系式:
(3)当这种面包的销售单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y=的图象交于点C,D,CE⊥x轴于点E,.
(1)求反比例函数的表达式与点D的坐标;
(2)以CE为边作ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=的图象有公共点时,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)
如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x-15|+=0(OB>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,连接BN.将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=.
⑴ 求点B的坐标.
⑵ 求直线BN的解析式.
⑶ 将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
(1)求抛物线的函数表达式;
(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了了解初中学校“高效课堂”的有效程度,并就初中生在课堂上是否具有“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”等学习行为进行评价.为此,该市教研部门开展了一次抽样调查, 并将调查结果绘制成尚不完整的条形统计图和扇形统计图( 如图所示),请根据图中信息解答下列问题:
(1)这次抽样调查的样本容量为 .
(2)在扇形统计图中,“主动质疑”对应的圆心角为 度;
(3)请补充完整条形统计图;
(4)若该市初中学生共有万人,在课堂上具有“独立思考”行为的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三张正面分别写有数字-1,1,2的卡片,它们除数字不同无其它差别,现将这三张卡片背面朝上洗匀后.
(1)随机抽取一张,求抽到数字2的概率;
(2)先随机抽取一张,以其正面数字作为k值,将卡片放回再随机抽一张,以其正面的数字作为b值,请你用恰当的方法表示所有可能的结果,并求出直线y=kx+b的图像不经过第四象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形为的内接四边形,直径与对角线相交于点,作于,与过点的直线相交于点,.
(1)求证:为的切线;
(2)若平分,求证:;
(3)在(2)的条件下,为的中点,连接,若,的半径为,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com