精英家教网 > 初中数学 > 题目详情

已知二次函数y=x2-2mx-2m2(m≠0)的图象与x轴交于A、B两点,它的顶点在以AB为直径的圆上.
(1)证明:A、B是x轴上两个不同的交点;
(2)求二次函数的解析式;
(3)设以AB为直径的圆与y轴交于C,D,求弦CD的长.

(1)证明:∵y=x2-2mx-2m2(m≠0),
∴a=1,b=-2m,c=-2m2
△=b2-4ac=(-2m)2-4×1×(-2m2)=4m2+8m2=12m2
∵m≠0,
∴△=12m2>0,
∴A,B是x轴上两个不同的交点;

(2)设AB点的坐标分别为A(x1,0),B(x2,0),
则x1+x2=-=2m,x1•x2==-2m2
∴AB=|x1-x2|==2|m|,
∵抛物线的顶点坐标为:(m,-3m2),且在以AB为直径的圆上,
∴AB=2×3m2
∴2|m|=6m2
∴m=±
∴y=x2±x-
(3)根据(2)的结论,圆的半径为×6m2=×2=1,
弦CD的弦心距为|m|=
CD==
∴CD=
分析:(1)求出根的判别式,然后根据根的判别式大于0即可判断与x轴有两个交点;
(2)利用根与系数的关系求出AB的长度,也就是圆的直径,根据顶点公式求出顶点的坐标得到圆的半径,然后根据直径是半径的2倍列式即可求出m的值,再把m的值代入二次函数解析式便不难求出函数解析式;
(3)根据(2)中的结论,求出圆的半径,弦心距,半弦,然后利用勾股定理列式求出半弦长,弦CD的长等于半弦的2倍.
点评:本题综合考查了二次函数与x轴的交点的个数的判断,根与系数关系的应用,以及圆的半径,弦心距,半弦长构成直角三角形的应用,勾股定理,综合性较强,但难度不是很大仔细分析求解便不难解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案