【题目】在墙壁上用两个钉子就能固定一根横放的木条,这样做根据的道理是( )
A. 两点确定一条直线 B. 两点确定一条线段
C. 两点之间,直线最短 D. 两点之间,线段最短
科目:初中数学 来源: 题型:
【题目】已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是( )
A.20或16B.20C.16D.以上答案均不对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( )
A.14.15
B.14.16
C.14.17
D.14.20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016浙江省温州市第24题)如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.
(1)求证:BO=2OM.
(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.
(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )
A. SAS B. ASA C. AAS D. SSS
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段AB,延长线段AB到点C,使,且BC比AB大1,D是线段AB的中点,如图所示.
(1)求线段CD的长;
(2)线段AC的长是线段DB的几倍?
(3)线段AD的长是线段BC的几分之几?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com