精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是(  )
A.y=﹣(x﹣ 2
B.y=﹣(x+ 2
C.y=﹣(x﹣ 2
D.y=﹣(x+ 2+

【答案】A
【解析】解:∵抛物线的解析式为:y=x2+5x+6,
∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣ 2+
∴向下平移3个单位长度的解析式为y=﹣(x﹣ 2+ ﹣3=﹣(x﹣ 2
故选A.
先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.

(1)求这条抛物线对应的函数解析式;
(2)求直线AB对应的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.
求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点, 且点A的坐标为(-2,3),点B的纵坐标是-2,求:

(1)一次函数与反比例函数的解析式;

2利用图像指出,当为何值时有> ;当为何值时有

(3)利用图像指出,当>3时的取值范围。

【答案】见解析

【解析】试题分析:(1)把A点坐标代入反比例函数解析式求出m的值,把B点的纵坐标代入反比例函数解析式求出B点的横坐标,再把AB两点的坐标代入一次函数解析式求出kb的值即可;

(2)根据A、B的横坐标,结合图象即可得出答案

(3)求出x=3y2的值,然后结合图象即可得出y2的取值范围.

试题解析:

解:(1A(-23)在反比例函数y2的图象上,

m=-2×3

=-6,

即反比例函数的解析式为y2

y2=-2时,x=3,

B(3,-2),

A(-2,3),B(3,-2)代入ykxb得:

解得:

即一次函数的解析式为y=-x+1;

(2)结合图象可得y1y2时对应的图象在点A的左侧和y轴与点B之间,

x<-20<x<3;

同理y1y2时对应的图象在点Ay轴之间和点B的右侧,

-2<x<0x>3;

(3)当x=3时,y2=-2,

x>3时反比例函数对应的图象在点B的右侧部分,

对应的函数值-2<y2<0.

点睛:本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数的解析式等知识点,主要考查学生的计算能力和观察图形的能力,用了数形结合思想.

型】解答
束】
26

【题目】如图四边形ABCD是平行四边形A(10)B(41)C(44).反比例函数 (x0)的图像经过点DP是一次函数y=ax+4-4a(a0)的图像与该反比例函数图像的一个公共点.

(1)求反比例函数的表达式;

(2)一次函数y=ax+4-4a(a0)的图像恒过一定点,直接写出这个定点的坐标.

(3)对于一次函数y=ax+4-4a(a0),当y随x的增大而减小时,确定点P的横坐标的取值范围.(不必写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是(  )

A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:
①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是(  )

A.②④⑤⑥
B.①③⑤⑥
C.②③④⑥
D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCD的对角线AC、BD交于点O,若OE=OF,DFBE.

(1)求证:△BOE≌△DOF;

(2)求证:四边形DEBF是平行四边形;

(3)若OD=OE=OF,则四边形DEBF是什么特殊的四边形,请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1的解析表达式为y=-3x+3,且l1x轴交于点D,直线l2经过点AB,直线l1l2,交于点C

1)求点D的坐标;

2)求直线l2的解析表达式;

3)求ADC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

同步练习册答案