【题目】如图,在锐角ΔABC中,已知AB=AC,D为底边BC上的一点,E为线段AD上的一点,且∠BED=∠BAC=2∠DEC,连接CE.
(1)求证:∠ABE=∠DAC
(2)若∠BAC=60°,试判断BD与CD有怎样的数量关系,并证明你的结论;
【答案】(1)见解析;(2)BD=2CD,理由见解析.
【解析】
(1)根据∠BED=∠BAE+∠ABE,∠BAC=∠BAE+∠DAC,且有∠BED=∠BAC,通过计算即可证得结论;
(2)在AD上取一点F,使得AF=BE,连接CF.过点C作CH∥BE,交直线AD于H点,证明△ACF≌△BAE(SAS),得出AE=CF,∠AEB=∠CFA,证出CF=CH,CF=EF,得出BE=2CH,由平行线分线段成比例定理得出BE:CH=BD:CD=2,即可得出结论.
(1)证明:
∵∠BED=∠BAE+∠ABE,∠BAC=∠BAE+∠DAC,
又∵∠BED =∠BAC,
∴∠BAE+∠ABE =∠BAE+∠DAC,
∴∠ABE=∠DAC;
(2)解:BD=2CD,理由如下:
如图,在AD上取一点F,使得AF=BE,连接CF.过点C作CH∥BE,交直线AD于H点.
在△ACF和△BAE中,
∴△ACF≌△BAE(SAS),
∴AE=CF,∠AEB=∠CFA,
∵∠AEB+∠BED=∠CFA+∠CFD=180°,
∴∠BED=∠CFD,
∵CH∥BE,
∴∠BED=∠CHD=∠CFD,
∴CF=CH,
∵∠BED=2∠DEC,∠CFD=∠DEC+∠ECF,
∴∠DEC=∠ECF,
∴CF=EF=AE,
∴BE=AF=2CH,
∵CH∥BE,
∴BE:CH=BD:CD=2,
即BD=2CD.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1、y2,都有点(x,y1)和(x,y2)关于点(x,x)中心对称(包括三个点重合时),由于对称中心都在直线y=x上,所以称这两个函数为关于直线y=x的特别对称函数.例如:y=x和y=为关于直线y=x的特别对称函数.
(1)若y=3x+2和y=kx+t(k≠0)为关于直线y=x的特别对称函数,点M(1,m)是y=3x+2上一点.
①点M(1,m)关于点(1,1)中心对称的点坐标为 .
②求k、t的值.
(2)若y=3x+n和它的特别对称函数的图象与y轴围成的三角形面积为2,求n的值.
(3)若二次函数y=ax2+bx+c和y=x2+d为关于直线y=x的特别对称函数.
①直接写出a、b的值.
②已知点P(﹣3,1)、点Q(2,1),连结PQ,直接写出y=ax2+bx+c和y=x2+d两条抛物线与线段PQ恰好有两个交点时d的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是BA延长线上一点,CD切⊙O于D点,弦DE∥CB,Q是AB上一动点,CA=1,CD是⊙O半径的倍.
(1)求⊙O的半径R;
(2)当Q从A向B运动的过程中,图中阴影部分的面积是否发生变化?若发生变化,请你说明理由;若不发生变化,请你求出阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的情景对话,然后解答问题:
老师:我们定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形中是否存在奇异三角形呢?
问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?__________.(填“是”或“否”)
问题(2):已知RtΔABC中,两边长分别是,10,,若这个三角形是奇异三角形,则第三边是__________.
问题(3):如图,以AB为斜边分别在AB的两侧作直角三角形,且AD=BD,若四边形ADBC内存在点E,使得AE=AD,CB=CE.试说明:△ACE是奇异三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,B、C、D在同一直线上,△ABC和△CDE都是等边三角形,且在直线BD的同侧,连接BE交AC于点F,连接AD交CE于点G,连接FG.
(1)求证:AD=BE;
(2)求证:△ACG≌△BCF;
(3)试猜想△CFG的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.
(1)求直线l所表示的一次函数的表达式;
(2)若将点P2先向右平移3个单位,再向上平移6个单位得到点P3.请判断点P3是否在直线l上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在圆内接四边形ABCD中,CD为△BAC的外角平分线,F为弧AD上一点,BC=AF,延长DF与BA的延长线交于E.
(1)求证:AD=BD;
(2)若AC=10,AF=3,DF:FE=3:2,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,点、分别在、上,连接,、的平分线交于点,、的平分线交于点.
求证:四边形是矩形.
小明在完成的证明后继续进行了探索,过点作,分别交、于点、,过点作,分别交、于点、,得到四边形.此时,他猜想四边形是菱形.请在下列框图中补全他的证明思路.
小明的证明思路:由,,易证,四边形是平行四边形.要证□是菱形,只要证.由已知条件________,,可证,故只要证,即证,易证________,________,故只要证,易证,,________,故得,即可得证.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com