精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,∠ABC=45°,tan∠ACB= .如图,把△ABC的一边BC放置在x轴上,有OB=14,OC= ,AC与y轴交于点E.

(1)求AC所在直线的函数解析式;
(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;
(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:在Rt△OCE中,OE=OCtan∠OCE= =2 ,∴点E(0,2 ).

设直线AC的函数解析式为y=kx+2 ,有 ,解得:k=-

∴直线AC的函数解析式为y=


(2)

解:在Rt△OGE中,tan∠EOG=tan∠OCE= =

设EG=3t,OG=5t,OE= = t,∴ ,得t=2,

故EG=6,OG=10,

∴SOEG=


(3)

解:存在.

①当点Q在AC上时,点Q即为点G,

如图1,作∠FOQ的角平分线交CE于点P1

由△OP1F≌△OP1Q,则有P1F⊥x轴,由于点P1在直线AC上,当x=10时,

y=﹣ =

∴点P1(10, ).

②当点Q在AB上时,

如图2,有OQ=OF,作∠FOQ的角平分线交CE于点P2

过点Q作QH⊥OB于点H,设OH=a,

则BH=QH=14﹣a,

在Rt△OQH中,a2+(14﹣a)2=100,

解得:a1=6,a2=8,

∴Q(﹣6,8)或Q(﹣8,6).

连接QF交OP2于点M.

当Q(﹣6,8)时,则点M(2,4).

当Q(﹣8,6)时,则点M(1,3).

设直线OP2的解析式为y=kx,则

2k=4,k=2.

∴y=2x.

解方程组 ,得

∴P2 );

当Q(﹣8,6)时,则点M(1,3),

同理可求P3 );

如图4,由QP4∥OF,QP4=OF=10,

设点P4的横坐标为x,则点Q的横坐标为(x﹣10),

∵yQ=yP,直线AB的函数解析式为:y=x+14,

∴x﹣10+14=﹣ x+2

解得:x= ,可得y=

∴点P4 ),

③当Q在BC边上时,如图5,OQ=OF=10,点P5在E点,

∴P5(0,2 ),

综上所述,满足条件的P点坐标为(10, )或( )或( )或(0,2 ),( ).


【解析】(1)根据三角函数求E点坐标,运用待定系数法求解;(2)在Rt△OGE中,运用三角函数和勾股定理求EG,OG的长度,再计算面积;(3)分两种情况讨论求解:①点Q在AC上;②点Q在AB上③当Q在BC边上时.求直线OP与直线AC的交点坐标即可.
【考点精析】认真审题,首先需要了解二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在直线上顺次取 ABC 三点,分别以 ABBC 为边长在直线的同侧作正三角形, 作得两个正三角形的另一顶点分别为 DE

(1)如图①,连结 CDAE,求证:CDAE

(2)如图②,若 AB1BC2,求 DE 的长;

(3)如图③,将图②中的正三角形 BCE B 点作适当的旋转,连结 AE,若有 DE2BE2AE2,试求∠DEB 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=2∠DAB=60°,EAD边的中点,点MAB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MDAN.

1)求证:四边形AMDN是平行四边形;

2)填空:AM的值为 时,四边形AMDN是矩形;AM的值为 时,四边形AMDN是菱形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面积;

(2)在图中作出△ABC关于y轴的对称图形△A1B1C1

(3)写出点A1,B1,C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长ACE,使CE=AC.

(1)求证:DE=DB;

(2)连接BE,试判断△ABE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4AB=7

1)指出旋转中心和旋转角度;

2)求DE的长度;

3BEDF的位置关系如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.
(1)说明△DCE≌△FBE的理由;
(2)若EC=3,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图A在数轴上所对应的数为﹣2

1)点B在点A右边距A4个单位长度,求点B所对应的数;

2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点 B 以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求AB两点间距离.

3)在2)的条件下,现A点静止不动,B点再以每秒2个单位长度沿数轴向左运动时,经过多长时间AB两点相距4个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,用三种大小不等的正方形①②③和个缺角的正方形拼成一个长方形ABCD(不重叠且没有缝隙),若GHaGKa+1,BFa﹣2

(1)试用含a的代数式表示:正方形②的边长CM的长=   ,正方形③的边长DM的长=   

(2)求长方形ABCD的周长(用含a的代数式表示);并求出当a=3时,长方形周长的值.

查看答案和解析>>

同步练习册答案