精英家教网 > 初中数学 > 题目详情

【题目】若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做整点.例如:P10)、Q2,﹣2)都是整点.抛物线ymx24mx+4m2m0)与x轴交于点AB两点,若该抛物线在AB之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是(  )

A. m1B. m≤1C. 1m≤2D. 1m2

【答案】B

【解析】

画出图象,利用图象可得m的取值范围

ymx24mx+4m2mx222m0

∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x2

由此可知点(20)、点(2,﹣1)、顶点(2,﹣2)符合题意.

①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意.

将(1,﹣1)代入ymx24mx+4m2得到﹣1m4m+4m2.解得m1

此时抛物线解析式为yx24x+2

y0x24x+20.解得

x轴上的点(10)、(20)、(30)符合题意.

则当m1时,恰好有 10)、(20)、(30)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.

m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】

答案图1m1时) 答案图2 m时)

②当该抛物线经过点(00)和点(40)时(如答案图2),这两个点符合题意.

此时x轴上的点 10)、(20)、(30)也符合题意.

将(00)代入ymx24mx+4m2得到004m+02.解得m

此时抛物线解析式为yx22x

x1时,得.∴点(1,﹣1)符合题意.

x3时,得.∴点(3,﹣1)符合题意.

综上可知:当m时,点(00)、(10)、(20)、(30)、(40)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,

m不符合题.

m

p>综合①②可得:当m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校初三一班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):

甲队

7

8

9

7

10

10

9

10

10

10

乙队

10

8

7

9

8

10

10

9

10

9

1)甲队成绩的中位数是_________分,乙队成绩的众数是_________分;

2)已知甲队成绩的方差是1.42,则成绩较为整齐的是_________队;

3)测试结果中,乙队获满分的四名同学相当优秀,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人参加学校组织的经典诵读比赛,用树状图或列表法求恰好抽中一男生一女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把半径为沿弦折叠,经过圆心,则阴影部分的面积为__________.(结果保留

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,DCB延长线上一点,∠BAD=∠BAC

1)如图,求证:

2)如图,在AD上有一点E,∠EBA=∠ACB120°.若AC2BC2,求DE的长;

3)如图,若ABAC2BC4BEABAD于点E,直接写出BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1km),慢车离乙地的距离为y2km),慢车行驶时间为xh),两车之间的距离为skm).y1y2x的函数关系图象如图1所示,sx的函数关系图象如图2所示.则下列判断:①图1a3;②当xh时,两车相遇;③当x时,两车相距60km;④图2C点坐标为(3180);⑤当xhh时,两车相距200km.其中正确的有_____(请写出所有正确判断的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,直线Ly=mx+n(m<0n>0)xy轴分别相交于AB两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点ABD的抛物线P叫做L的关联抛物线,而L叫做P的关联直线.

(1)Ly=-x+2,则P表示的函数解析式为______;若P,则表示的函数解析式为_______

(2)如图②,若Ly=-3x+3P的对称轴与CD相交于点E,点FL上,点QP的对称轴上.当以点CEQF为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;

(3)如图③,若Ly=mx+1GAB中点,HCD中点,连接GHMGH中点,连接OM.若OM=,求出LP表示的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在小正方形的边长均为1的方格纸中,有线段和线段,点均在小正方形的顶点上.

(1)在方格纸中画出以为斜边的直角三角形,点E在小正方形的顶点上,且的面积为5

(2)在方格纸中画出以为一边的,点在小正方形的顶点上,的面积为4,射线与射线交于点,且,连接,请直接写出线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2.

(1)第一批饮料进货单价多少元?

(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:

我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.

理解:

(1)如图1,已知RtABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);

(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.

求证:BD是四边形ABCD的“相似对角线”;

(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若EFG的面积为2,求FH的长.

查看答案和解析>>

同步练习册答案