【题目】某校初三一班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲队 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙队 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是_________分,乙队成绩的众数是_________分;
(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是_________队;
(3)测试结果中,乙队获满分的四名同学相当优秀,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人参加学校组织的经典诵读比赛,用树状图或列表法求恰好抽中一男生一女生的概率.
【答案】(1)9.5; 10 ;(2)乙 ;(3) .
【解析】
(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;
(2)先求出乙队的方差,再比较出甲队和乙队的方差,根据方差的意义即可得出答案;
(3)列出表格即可求出恰好抽中一男生一女生的概率.
解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),
则中位数是9.5分;
乙队成绩中10出现了4次,出现的次数最多,
则乙队成绩的众数是10分;
故答案为:9.5;10,
(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,
则方差是:×[4×(10-9)2+2×(8-9)2+(7-9)2+3×(9-9)2]=1;
∵甲队成绩的方差是1.4,乙队成绩的方差是1,
∴成绩较为整齐的是乙队.
故答案为:乙;
(3)列表如下:
男1 | 男2 | 男3 | 女 | |
男1 | (男1,男2) | (男1,男3) | (男1,女) | |
男2 | (男2,男1) | (男2,男3) | (男2,女) | |
男3 | (男3,男1) | (男3,男2) | (男3,女) | |
女 | (女,男1) | (女,男2) | (女,男3) |
由上表可知,共12种可能,其中一男一女的可能性有6种,分别是(男,女)三种,(女,男)三种,
∴P(一男一女)==.
科目:初中数学 来源: 题型:
【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是( )
A. 甲乙两地相距1200千米
B. 快车的速度是80千米∕小时
C. 慢车的速度是60千米∕小时
D. 快车到达甲地时,慢车距离乙地100千米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l: 与x轴.y轴交于B,A两点,点D,C分别为线段AB,OB的中点,连结CD,如图,将△DCB绕点B按顺时针方向旋转角,如图.
(1)连结OC,AD,求证∽;
(2)当0°<<180°时,若△DCB旋转至A,C,D三点共线时,求线段OD的长;
(3)试探索:180°<<360°时,是否还有可能存在A,C,D三点共线的情况,若存在,求出此直线的表达式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3cm,AD=4cm,EF经过对角线BD的中点O,分别交AD,BC于点E,F.
(1)求证:△BOF≌△DOE;
(2)当EF⊥BD时,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线过点,,与轴相交于点.
(1)求抛物线的解析式;
(2)在轴正半轴上存在点,使得是等腰三角形,请求出点的坐标;
(3)如图2,点是直线上方抛物线上的一个动点.过点作于点,是否存在点,使得中的某个角恰好等于的2倍?若存在,请求出点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明想测量斜坡旁一棵垂直于地面的树的高度,他们先在点处测得树顶的仰角为,然后在坡顶测得树顶的仰角为,已知斜坡的长度为,斜坡顶点到地面的垂直高度,则树的高度是( )
A. 20B. 30C. 30D. 40
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+b分别交x,y轴于点A、C,抛物线y=ax2+x+4经过A、C两点,交x轴于另外一点B.
(1)求抛物线的解析式;
(2)点P在第一象限内抛物线上,连接PB、PC,作平行四边形PBDC,DE⊥y轴于点E,设点P 的横坐标为t,线段DE的长度为d,求d与t之间的函数关系式.
(3)在(2)的条件下,延长BD交直线AC与点F,连接OF,若∠AFO=∠BFO,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对给定的一张矩形纸片进行如下操作:先沿折叠,使点落在边上(如图①),再沿折叠,这时发现点恰好与点重合(如图②)
(1)根据以上操作和发现,则____;
(2)将该矩形纸片展开,如图③,折叠该矩形纸片,使点与点重合,折痕与相交于点,再将该矩形纸片展开.
求证:;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是( )
A. ≤m<1B. <m≤1C. 1<m≤2D. 1<m<2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com