精英家教网 > 初中数学 > 题目详情

【题目】如图,把半径为沿弦折叠,经过圆心,则阴影部分的面积为__________.(结果保留

【答案】

【解析】

OODABD,交劣弧ABE,根据勾股定理求出AD,根据垂径定理求出AB,分别求出扇形AOB和三角形AOB的面积,即可得出答案.

OODABD,交劣弧ABE,如图:

∵把半径为2的⊙O沿弦AB折叠,经过圆心O

OD=DE=1OA=2

∵在RtODA中,sinA==

∴∠A=30°

∴∠AOE=60°

同理∠BOE=60°

∴∠AOB=60°+60°=120°

RtODA中,由勾股定理得:AD===

ODABODO

AB=2AD=2

∴阴影部分的面积S=S扇形AOB-SAOB=-×2×1=-

故答案为:-

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l x.y轴交于BA两点,点DC分别为线段ABOB的中点,连结CD,如图,将DCB绕点B按顺时针方向旋转角,如图.

(1)连结OCAD,求证

(2)0°<<180°时,若DCB旋转至ACD三点共线时,求线段OD的长;

(3)试探索:180°<<360°时,是否还有可能存在ACD三点共线的情况,若存在,求出此直线的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+b分别交xy轴于点AC,抛物线y=ax2+x+4经过AC两点,交x轴于另外一点B

1)求抛物线的解析式;

2)点P在第一象限内抛物线上,连接PBPC,作平行四边形PBDCDEy轴于点E,设点P 的横坐标为t,线段DE的长度为d,求dt之间的函数关系式.

3)在(2)的条件下,延长BD交直线AC与点F,连接OF,若∠AFO=BFO,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对给定的一张矩形纸片进行如下操作:先沿折叠,使点落在边上(如图①),再沿折叠,这时发现点恰好与点重合(如图②)

(1)根据以上操作和发现,则____

(2)将该矩形纸片展开,如图③,折叠该矩形纸片,使点与点重合,折痕与相交于点,再将该矩形纸片展开.

求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB是⊙O的直径,点D是弧AC的中点,∠COB60°,过点CCEAD,交AD的延长线于点E

1)求证:CE为⊙O的切线;

2)若CE,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,OAOBABx轴于点C,点A1)在反比例函数的图象上.

1)求反比例函数的表达式;

2)在x轴的负半轴上存在一点P,使得SAOP=SAOB,求点P的坐标;

3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax+1)(x3)与x轴交于AB两点,抛物线与x轴围成的封闭区域(不包含边界),仅有4个整数点时(整数点就是横纵坐标均为整数的点),则a的取值范围_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做整点.例如:P10)、Q2,﹣2)都是整点.抛物线ymx24mx+4m2m0)与x轴交于点AB两点,若该抛物线在AB之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是(  )

A. m1B. m≤1C. 1m≤2D. 1m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.乙两人进行跑步训练,他们所跑的路程y(米)与时间x(秒)之间的关系如图所示,则下列说法错误的是( 

A. 离终点40米处,乙追上甲B. 甲比乙迟3秒到终点

C. 甲跑步的速度是5/D. 乙跑步的速度是/

查看答案和解析>>

同步练习册答案