精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),下列说法:①abc<0;﹣2b+c=0;4a+2b+c<0;④若( ,y1)、(,y2)是抛物线上的两点,则y1<y2>m(am+b)(其中m≠).其中说法正确的是_____

【答案】①②④⑤;

【解析】

①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④求出点(-,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1y2的大小,⑤根据最大值判断即可.

①∵图像开口向下,

a<0,

抛物线与y轴交于y轴正半轴,

∴c>0,

对称轴x= -=>0,

∴b>0,

∴abc<0,故①正确;

②将(2,0)代入y=ax2+bx+c (a≠0),

4a+2b+c=0,

∵-=

∴a=﹣b,

∴﹣4b+2b+c=0,

∴﹣2b+c=0,故②正确;

③由②可知:4a+2b+c=0,故③错误;

④由于抛物线的对称轴为x=

∴(,y1)与(,y1)关于x=对称,

由于x>时,y随着x的增大而减小,>

∴y1<y2 ,故④正确;

⑤由图象可知:x=时,y可取得最大值,且最大值为a+b+c,

∴m≠

∴ a+ b+c>am2+bm+c,

a+b>m(am+b),故⑤正确;

故答案为:①②④⑤;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,EF分别是ADAD延长线上的点,且DEDF,连接BFCE,下列说法:①△ABD 和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是(

A. ①② B. ③⑤ C. ①③④ D. ①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣bx+2(﹣2≤b≤2),当b从﹣2逐渐增加到2的过程中,它所对应的抛物线的位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是(  )

A. 先往左上方移动,再往左下方移动

B. 先往左下方移动,再往左上方移动

C. 先往右上方移动,再往右下方移动

D. 先往右下方移动,再往右上方移动

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线的部分图象如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:

方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为若点在该抛物线上,则

其中正确的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)

(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?

(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2x﹣1.

x

﹣1

0

1

2

3

y

   

   

   

   

   

(1)请在表内的空格中填入适当的数;

(2)根据列表,请在所给的平面直角坐标系中画出y=x2﹣2x﹣1的图象;

(3)当x在什么范围内时,yx增大而减小;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:

abc<0;2a﹣b<0;a﹣b+c>0;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣x2+x+2x轴交于A,B两点,交y轴于点C,点C关于抛物线对称轴对称的点为D.

(1)求点D的坐标及直线AD的解析式;

(2)如图1,连接CD、AD、BD,点M为线段CD上一动点,过MMNBD交线段ADN点,点Py轴上的动点,当△CMN的面积最大时,求△MPN的周长取得最小值时点P的坐标;

(3)如图2,线段AE在第一象限内交BD于点E,其中tanEAB=,将抛物线向右水平移动,点A平移后的对应点为点G;将△ABD绕点B逆时针旋转,旋转后的三角形纪为△A1BD1,若射线BD1与线段AE的交点为F,连接FG.若线段FG把△ABF分成△AFG和△BFG两个三角形,是否存在点G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,AB=10,cosB=,点MAB边的中点,将ABC绕着点M旋转,使点C与点A重合,点A与点D重合,点B与点E重合,得到DEA,且AECB于点P,那么线段CP的长是__________

查看答案和解析>>

同步练习册答案