精英家教网 > 初中数学 > 题目详情

【题目】如图,

点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:
(1)△EAB≌△EDC;
(2)∠EFG=∠EGF.

【答案】
(1)

证明:∵四边形ABCD是矩形,

∴AB=DC,∠BAD=∠CDA=90°.

∵EA=ED,

∴∠EAD=∠EDA,

∴∠EAB=∠EDC.

在△EAB与△EDC中,

∴△EAB≌△EDC(SAS);


(2)

证明:∵△EAB≌△EDC,

∴∠AEF=∠DEG,

∵∠EFG=∠EAF+∠AEF,∠EGF=∠EDG+∠DEG,

∴∠EFG=∠EGF.


【解析】(1)先由四边形ABCD是矩形,得出AB=DC,∠BAD=∠CDA=90°.由EA=ED,得出∠EAD=∠EDA,根据等式的性质得到∠EAB=∠EDC.然后利用SAS即可证明△EAB≌△EDC;
(2)由△EAB≌△EDC,得出∠AEF=∠DEG,根据三角形外角的性质得出∠EFG=∠EAF+∠AEF,∠EGF=∠EDG+∠DEG,即可证明∠EFG=∠EGF.
【考点精析】根据题目的已知条件,利用矩形的性质的相关知识可以得到问题的答案,需要掌握矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y= x﹣ 与x,y轴分别交于点A,B,与反比例函数y= (k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.
(1)求点A的坐标.
(2)若AE=AC. ①求k的值.
②试判断点E与点D是否关于原点O成中心对称?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )
A.|﹣2|=﹣2
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D、E、F分别为△ABC各边中点,下列说法正确的是(  )

A.DE=DF
B.EF=?AB
C.S△ABD=S△ACD
D.AD平分∠BAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写下表:

蔬菜的批发量(千克)

25

60

75

90

所付的金额(元)

125

   

300

   


(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;

(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.

(1)求点A和点C的坐标;
(2)当0<t<30时,求m关于t的函数关系式;
(3)当m=35时,请直接写出t的值;
(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,码头A在码头B的正东方向,两个码头之间的距离为32海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C的距离.(≈1.732,结果精确到0.01海里)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是ABCD的边AD的中点,连接CE交BD于点F,如果SDEF=a,那么SBCF=

查看答案和解析>>

同步练习册答案