精英家教网 > 初中数学 > 题目详情

【题目】某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写下表:

蔬菜的批发量(千克)

25

60

75

90

所付的金额(元)

125

   

300

   


(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;

(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?

【答案】
(1)

解:由题意知:

当蔬菜批发量为60千克时:60×5=300(元),

当蔬菜批发量为90千克时:90×5×0.8=360(元).

故答案为:300,360;


(2)

解:设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得

解得

故该一次函数解析式为:y=﹣30x+240;


(3)

解:设当日可获利润w(元),日零售价为x元,由(2)知,

w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,

当x=5.5时,当日可获得利润最大,最大利润为112.5元.


【解析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;
(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;
(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点A在反比例函数y= (x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.判断△APQ的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题探究】
(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.
【深入探究】
(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.
(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有 个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,

点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:
(1)△EAB≌△EDC;
(2)∠EFG=∠EGF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.

(1)填空:点A的坐标为(    ),点B的坐标为(    ),点C的坐标为(    ),点D的坐标为(    );
(2)点P是线段BC上的动点(点P不与点B、C重合)
①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;
②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;
③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB= 度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.

(1)求证:AB与⊙O相切;
(2)若等边三角形ABC的边长是4,求线段BF的长?

查看答案和解析>>

同步练习册答案