【题目】如图,Rt△ABC纸片中,∠C=90°,AC=BC=4,点D在边BC上,以AD为折痕,将△ABD折叠,得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD,BD,下列结论错误的是( )
A.AD=BCB.BD⊥DE
C.四边形ACED是菱形D.四边形ABCD的面积为4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,转盘被等分成10个扇形,每个扇形上面写有一个有理数.任意转动转盘,求转得下列各数的概率.
(1)转得正数;
(2)转得负整数;
(3)转得绝对值不大于5的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(0, ).
(1)求抛物线的解析式.
(2)抛物线与轴交于另一个交点为C,点D在线段AC上,已知AD=AB,若动点P从A出发沿线段AC以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从B出发沿线段BC匀速运动,问是否存在某一时刻,使线段PQ被直线BD垂直平分,若存在,求出点Q的运动速度;若不存在,请说明理由.
(3)在(2)的前提下,过点B的直线与轴的负半轴交于点M,是否存在点M,使以A、B、M为顶点的三角形与相似,如果存在,请直接写出M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
(2)求原来的路线AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.
(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足当m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.
(1)反比例函数y=是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由.
(2)若一次函数y=kx+b(k≠0)是闭间[m,n]上的“闭函数”,求此函数的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com