【题目】如图,已知等边三角形的顶点分别在反比例函数图像的两个分支上,点在反比例函数的图像上,当的面积最小时,的值__________.
【答案】-3
【解析】
当等边三角形ABC的边长最小时,△ABC的面积最小,点A,B分别在反比例函数y=图象的两个分支上,则当A、B在直线y=x上时最短,即此时△ABC的面积最小,根据反比例函数图象的对称性可得OA=OB,设OA=x,则AC=2x,OC=x,根据等边三角形三线合一可证明△AOE∽△OCF,根据相似三角形面积比等于相似比的平方可得结论.
解:根据题意当A、B在直线y=x上时,△ABC的面积最小,
函数y=图象关于原点对称,
∴OA=OB,
连接OC,过A作AE⊥y轴于E,过C作CF⊥y轴于F,
∵△ABC是等边三角形,
∴AO⊥OC,
∴∠AOC=90°,∠ACO=30°,
∴∠AOE+∠COF=90°,
设OA=x,则AC=2x,OC=x,
∵AE⊥y轴,CF⊥y轴,
∴∠AEO=∠OFC=∠AOE+∠OAE=90°,
∴∠COF=∠OAE,
∴△AOE∽△OCF,
∴,
∵顶点A在函数y=图象的分支上,
∴S△AOE=,
∴S△OCF=,
∵点C在反比例函数y=(k≠0)的图象上,
∴k=-3,
故答案为-3.
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,,,过点作,垂足为,,垂足为.
(1)连接,用等式表示线段与的数量关系,并说明理由;
(2)连接,过点作,垂足为,求的长(用含的代数式表示);
(3)延长线段到,延长线段到,且,连接,,.
①判断的形状,并说明理由;
②若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
设(其中均为整数),则有.
∴.这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
当均为正整数时,若,用含m、n的式子分别表示,得= ,= ;
(2)利用所探索的结论,找一组正整数,填空: + =( + )2;
(3)若,且均为正整数,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点, 在反比例函数(m为常数)的图象上,连接AO并延长与图象的另一支有另一个交点为点C,过点A的直线l与x轴的交点为点,过点C作CE∥x轴交直线l于点E.
(1)求m的值,并求直线l对应的函数解析式;
(2)求点E的坐标;
(3)过点B作射线BN∥x轴,与AE交于点M (补全图形),求证:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与轴交于两点,与轴交于点.已知点,点.
(1)当时,求点的坐标;
(2)直线与抛物线交于两点,抛物线的对称轴为直线
①求,所满足的数量关系式;
②当OP=OA时,求线段的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AB=10,tanA=.点P是斜边AB上一个动点,过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q.设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD中,AD∥BC,AB=BC=4,∠B=60°,∠C=105°,点E为BC的中点,以CE为弦作圆,设该圆与四边形ABCD的一边的交点为P,若∠CPE=30°,则EP的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com