【题目】如图,反比例函数(, )的图象与直线相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.
(1)求k的值;
(2)求点C的坐标;
(3)在y轴上确实一点M,使点M到C、D两点距离之和d=MC+MD,求点M的坐标.
【答案】k=1;C(, );M((0, )
【解析】试题分析:首先根据点A的坐标和AB=3BD求出点B的坐标,从而得出k的值;根据一次函数和反比例函数的解析式得出点C的坐标;作点D关于y轴对称点E,连接CE交y轴于点M,即为所求,设直线CE的解析式为y=kx+b,将点C和点E的坐标代入求出k和b的值,从而得到直线CE的解析式,然后求出直线与y轴的交点坐标,即点M的坐标.
试题解析:(1)∵A(1,3), ∴OB=1,AB=3, 又AB=3BD, ∴BD=1, ∴B(1,1), ∴k=1×1=1;
(2)由(1)知反比例函数的解析式为,
解方程组,得或(舍去), ∴点C的坐标为(, );
(3)作点D关于y轴对称点E,则E(,1),连接CE交y轴于点M,即为所求.
设直线CE的解析式为,则,解得, ,
∴直线CE的解析式为, 当x=0时,y=, ∴点M的坐标为(0, ).
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到的位置,连接,则的长为( ).
A. B. C. D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上原点为O,点P表示的数为30,点Q表示的数为120,甲、乙两只小虫分别从O,P两点出发,沿直线匀速爬向点Q,最终达到点Q.已知甲每分钟爬行60个单位长度,乙每分钟爬行30个单位长度,则在此过程中,甲、乙两只小虫相距10个单位长度时的爬行时间为_________分钟.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是,连接交于点O,并分别与边交于点,连接AE,下列结论: ; ; ; 当时, ,其中正确结论的个数是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师布置了这样一道作业题:
在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.
小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造ΔABD的轴对称图形ΔABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.
图1 图2
(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;
(2)结合小聪研究特殊问题的启发,请解决老师布置的这道作业题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.
(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?
(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆。假设所进车辆全部售完,为了使利润最大,该商城应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在,O是AC上的一点, 与BC,AB分别切于点C,D, 与AC相交于点E,连接BO.
(1) 求证:CE2=2DEBO;
(2) 若BC=CE=6,则AE= ,AD= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴交于点,与y轴交于点B,抛物线经过点.
求k的值和抛物线的解析式;
为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点.
若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.
当 时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数,当时,函数有最大值5.
(1)求此二次函数图象与坐标轴的交点;
(2)将函数图象x轴下方部分沿x轴向上翻折,得到的新图象与直线恒有四个交点,从左到右,四个交点依次记为,当以为直径的圆与轴相切时,求的值.
(3)若点是(2)中翻折得到的抛物线弧部分上任意一点,若关于m的一元二次方程 恒有实数根时,求实数k的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com