分析 先证明△ODB是等边三角形,得到∠DOB=60°,根据弧长公式即可解决问题.
解答 解:∵△
BCD是由△BCO翻折得到,
∴∠CBD=∠CBO,∠BOD=∠BDO,
∵OD=OB,
∴∠ODB=∠OBD,
∴∠ODB=2∠DBC,
∵∠ODB+∠DBC=90°,
∴∠ODB=60°,∵OD=OB
∴△ODB是等边三角形,
∴∠DOB=60°,
∵∠AOB=100°,
∴∠AOD=∠AOB-∠DOB=40°,
∴弧AD的长=$\frac{40•π•9}{180}$=2π,
故答案为2π.
点评 本题考查翻折变换、弧长公式、等边三角形的判定和性质等知识,解题的关键是等边三角形的发现,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
| A. | 12 | B. | 15 | C. | 12或15 | D. | 以上都不对 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com