【题目】已知矩形中,对角线的垂直平分线交直线于点,交直线于点,若,,则长为______.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.
(1)求证:CD是⊙O的切线;
(2)求证:CE=CF;
(3)若BD=1,CD=,求弦AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点在斜边上,以为圆心,为半径作圆,分别与、相交于点、,连接,已知.
(1)求证:是的切线;
(2)若,,求劣弧与弦所围阴影图形的面积;
(3)若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.
(1)求抛物线解析式及点D坐标;
(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;
(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰中,,点,分别为,的中点,连接.在线段上任取一点,连接,.若,,设(当点与点重合时,的值为0),.
小明根据学习函数的经验,对函数随自变量的变换而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)通过取点、画图、计算,得到了与的几组值,如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
5.2 | 4.2 | 4.6 | 5.9 | 7.6 | 9.5 |
(说明:补全表格时,相关数值保留一位小数)
(参考数据:,,)
(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)函数的最小值为 (保留一位小数),此时点在图1中的什么位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形为的内接四边形,对角线、交于,.
(1)求证:;
(2)作的角分线交于点,连接,若,连接、,与交于,求证:;
(3)在(2)的条件下,连接,延长交于点,若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在的正方形网格中,黑色正方形表示数字1,白色正方形表示数字0.如图1是某个学生的身份识别图案.约定如下:把第i行,第j列表示的数字记为(其中i,j=1,2,3,4),如图1中第2行第1列的数字=0;对第i行使用公式进行计算,所得结果表示所在年级,表示所在班级,表示学号的十位数字,表示学号的个位数字.如图1中,第二行,说明这个学生在5班.
(1)图1代表的学生所在年级是______年级,他的学号是_________;
(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年2月9日起,受新冠疫情影响,重庆市所有中小学实行“线上教学”,落实教育部“停课不停学”精神.某重点中学初级为了落实教学常规,特别要求家校联动,共同保证年级名学生上网课期间的学习不受太大影响.为了了解家长配合情况,年级对家长在“钉钉”上早读打卡的严格程度进行了调查,调查结果分为“很严格”,“严格”,“比较严格”和“不太严格”四类.年级抽查了部分家长的调查结果,绘制成如图所示的扇形统计图和条形统计图.
接着,年级对早读打卡“不太严格”的全体学生进行了第一次基础知识检测,同时召开专题家长会提醒,督促这些家长落实责任,并告知将再次进行检测.两周后,年级又对之前早读打卡“不太严格”的这部分学生进行了第二次基础知识检测.
[整理、描述数据]
以下是抽查的家长打卡“不太严格”的对应学生的两次检测(满分均为分)情况:
分数段 | |||||
第一次人数 | |||||
第二次人数 |
[分析数据]:
众数 | 中位数 | 平均数 | |
第一次 | |||
第二次 |
请根据调查的信息
(1)本次参与调查的学生总人数是___,并补全条形统计图;
(2)计算____,____,并请你估计全年级所有被检测学生中,第二次检测得分不低于分的人数;
(3)根据调查的相关数据,请选择适当的统计量评价学校对早读打卡“不太严格”的家长召开专题家长会的效果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.
(1)求抛物线的函数表达式;
(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;
(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com