【题目】在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.
活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.
(思考)图2中的四边形ABDE是平行四边形吗?请说明理由.
(发现)当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.
活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).
(探究)当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.
【答案】【思考】是,理由见解析;【发现】;【探究】BD=2OF,理由见解析;
【解析】
【思考】由全等三角形的性质得出AB=DE,∠BAC=∠EDF,则AB∥DE,可得出结论;
【发现】连接BE交AD于点O,设AF=x(cm),则OA=OE=(x+4),得出OF=OA﹣AF=2﹣x,由勾股定理可得,解方程求出x,则AF可求出;
【探究】如图2,延长OF交AE于点H,证明△EFO≌△EFH(ASA),得出EO=EH,FO=FH,则∠EHO=∠EOH=∠OBD=∠ODB,可证得△EOH≌△OBD(AAS),得出BD=OH,则结论得证.
解:【思考】四边形ABDE是平行四边形.
证明:如图,∵△ABC≌△DEF,
∴AB=DE,∠BAC=∠EDF,
∴AB∥DE,
∴四边形ABDE是平行四边形;
【发现】
如图1,连接BE交AD于点O,
∵四边形ABDE为矩形,
∴OA=OD=OB=OE,
设AF=x(cm),则OA=OE=(x+4),
∴OF=OA﹣AF=2﹣x,
在Rt△OFE中,∵OF2+EF2=OE2,
∴,
解得:x=,
∴AF=cm.
【探究】BD=2OF,
证明:如图2,延长OF交AE于点H,
∵四边形ABDE为矩形,
∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,
∴∠OBD=∠ODB,∠OAE=∠OEA,
∴∠ABD+∠BDE+∠DEA+∠EAB=360°,
∴∠ABD+∠BAE=180°,
∴AE∥BD,
∴∠OHE=∠ODB,
∵EF平分∠OEH,
∴∠OEF=∠HEF,
∵∠EFO=∠EFH=90°,EF=EF,
∴△EFO≌△EFH(ASA),
∴EO=EH,FO=FH,
∴∠EHO=∠EOH=∠OBD=∠ODB,
∴△EOH≌△OBD(AAS),
∴BD=OH=2OF.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG=,AH=,求EM的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校7名学生在某次测量体温(单位:℃)时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据描述正确的是( )
A.众数是36.5B.中位数是36.7
C.平均数是36.6D.方差是0.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是( )
A.当n﹣m=1时,b﹣a有最小值
B.当n﹣m=1时,b﹣a有最大值
C.当b﹣a=1时,n﹣m无最小值
D.当b﹣a=1时,n﹣m有最大值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.
(1)求证:∠CAD=∠CBA.
(2)求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是( )
A. BD⊥AC B. AC2=2ABAE C. △ADE是等腰三角形 D. BC=2AD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)如图①,若点D是抛物线上一动点,设点D的横坐标为m(0<m<3),连接CD,BD,BC,AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;
(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线与轴交于点,与轴交于点,点为线段的中点,将直线向右平移个单位长度,、、的对应点为、、,反比例函数的图象经过点,连接、.
(1)当时,求的值;
(2)如图②, 当反比例函数的图象经过点时, 求四边形的面积;
(3)如图③,连接,当为等腰三角形时,求的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com