精英家教网 > 初中数学 > 题目详情

【题目】已知:△ABC与△ABD中,∠CAB=∠DBAβ,且∠ADB+∠ACB180°

提出问题:如图1,当∠ADB=∠ACB90°时,求证:ADBC

类比探究:如图2,当∠ADB≠ACB时,ADBC是否还成立?并说明理由.

综合运用:如图3,当β18°BC1,且ABBC时,求AC的长.

【答案】1)见解析;(2)仍然成立,理由见解析;(31

【解析】

1)证明△DBA≌△CAB即可;

2)作∠BEC=∠BCEBEACE,证明△DBA≌△EAB即可;

3)作∠BEC=∠BCEBEACE,由(2)得,ADBCBE1,通过角之间的关系可求得EFBE1,再证△CBE∽△CFB,根据相似三角形的对应边成比例求解即可.

1)在△BDA和△CAB

∴△DBA≌△CAB(AAS)

2)结论仍然成立.

理由:作∠BEC=∠BCEBEACE

∵∠ADB+∠ACB=∠AEB+∠BEC180°

∴∠ADB=∠AEB

又∠CAB=∠DBAAB=BA

∴△DBA≌△EAB(AAS)

BEAD

∵∠BEC=∠BCE

BCBE

ADBC

3)作∠BEC=∠BCEBEACE,

由(2)得,ADBCBE1

RtACB中,∠CAB18°

∴∠C72°,∠BEC=∠C 72°

由∠CFB=∠CAB+∠DBA36°

∴∠EBF=∠CEB-∠CFB36°

EFBE1

在△BCF中,∠FBC180°-∠BFC-∠C72°

∴∠FBC=∠BEC,∠C=∠C

∴△CBE∽△CFB

CEx,∴1x(x1)

解之,x

CF

由∠FBC=∠BEC

BFCF.又AFBF

AC2CF1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=mx+n与双曲线y=相交于A(﹣12)、B2b)两点,与y轴相交于点C

1)求mn的值;

2)若点D与点C关于x轴对称,求△ABD的面积;

3)在坐标轴上是否存在异于D点的点P,使得SPAB=SDAB?若存在,直接写出P点坐标;若不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程有两个不相等的实数根.

(1)的取值范围;

(2)为正整数,且该方程的两个根都是整数,求的值并求出方程的两个整数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+3的图象分别交x轴、y轴于点B、点C,与反比例函数的图象在第四象限的相交于点P,并且PAy轴于点A,已知A 0,﹣6),且SCAP18

1)求上述一次函数与反比例函数的表达式;

2)设Q是一次函数ykx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张直角三角形纸片ABC,∠ACB90°AB10AC6,点DBC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca0)图象如图,下列结论:abc0②2a+b0ab+c0a+c0b24acx1时,yx的增大而减小.其中正确的说法有_____(写出正确说法的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x22x+3 的图象与x轴交于AB两点(A在点B的左边),与y轴交于点C

1)求ABC的坐标;

2)过抛物线上一点Fy轴的平行线,与直线AC交于点G.若FG=AC,求点F的坐标;

3E(0,2),连接BE.将△OBE绕平面内的某点逆时针旋转90°得到△OBEOBE的对应点分别为OBE.若点BE两点恰好落在抛物线上,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,对角线,点E是线段BC上的动点,连接DE,过点DDPDE,在射线DP上取点F,使得,连接CF,周长的最小值为___________.

查看答案和解析>>

同步练习册答案