【题目】如图,
和
都是等腰直角三角形,
,
的顶点
与
的斜边
的中点重合,将
绕点
旋转,旋转过程中,线段
与线段
相交于点
,射线
与线段
相交于点
,与射线
相交于点
.
![]()
(1)求证:
;
(2)求证:
平分
;
(3)当
,
,求
的长.
科目:初中数学 来源: 题型:
【题目】二次函数
的部分图象如图所示,其中图象与
轴交于点
,与
轴交于点
,且经过点
.
![]()
求此二次函数的解析式;
将此二次函数的解析式写成
的形式,并直接写出顶点坐标以及它与
轴的另一个交点
的坐标.
利用以上信息解答下列问题:若关于
的一元二次方程
(
为实数)在
的范围内有解,则
的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系
中,抛物线
与
轴交于点A、B(点A在点B的左侧),且AB=6.
(1)求这条抛物线的对称轴及表达式;
(2)在y轴上取点E(0,2),点F为第一象限内抛物线上一点,联结BF、EF,如果
,求点F的坐标;
(3)在第(2)小题的条件下,点F在抛物线对称轴右侧,点P在
轴上且在点B左侧,如果直线PF与y轴的夹角等于∠EBF,求点P的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习函数的过程中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程,根据你所经历的学习过程,现在来解决下面的问题:在函数y=ax3﹣bx+2中,当x=﹣1时,y=4;当x=﹣2时 y=0.
(1)根据已知条件可知这个函数的表达式 .
(2)根据已描出的部分点,画出该函数图象.
(3)观察所画图象,回答下列问题:
①该图象关于点 成中心对称;
②当x取何值时,y随着x的增大而减小;
③若直线y=c与该图象有3个交点,直接写出c的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
中,
,点
位于第一象限,点
为坐标原点,点
在
轴正半轴上,若双曲线![]()
与
的边
、
分别交于点
、
,点
为
的中点,连接
、
.若
,则
为_______________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量山脚到塔顶的高度(即
的长),某同学在山脚
处用测角仪测得塔顶
的仰角为
,再沿坡度为
的小山坡前进400米到达点
,在
处测得塔顶
的仰角为
.
![]()
(1)求坡面
的铅垂高度(即
的长);
(2)求
的长.(结果保留根号,测角仪的高度忽略不计).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,学校旗杆的下方有一块圆形草坪,草坪的外面围着“圆环”水池,草坪和水池的外边缘是两个同心圆,旗杆在圆心O的位置且与地面垂直.
![]()
(1)若草坪的面积与圆环水池的面积之比为1∶4,求两个同心圆的半径之比.
(2)如图,若水池外面通往草坪有一座10米长的小桥BC,小桥所在的直线经过圆心O,上午8:00时太阳光线与地面成30°角,旗杆顶端的影子恰好落在水池的外缘;上午9:00时太阳光线与地面成45°角,旗杆顶端的影子恰好落在草坪的外缘,求旗杆的高OA长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,试探索线段BC,DC,EC之间满足的等量关系,并证明你的结论.
![]()
(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C、D在线段AB上,且△PCD是等边三角形.∠APB=120°.
(1)求证:△ACP∽△PDB;
(2)当AC=4,BD=9时,试求CD的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com